These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 18565507)
1. The human angiotensin AT(1) receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation. Hansen JL; Aplin M; Hansen JT; Christensen GL; Bonde MM; Schneider M; Haunsø S; Schiffer HH; Burstein ES; Weiner DM; Sheikh SP Eur J Pharmacol; 2008 Aug; 590(1-3):255-63. PubMed ID: 18565507 [TBL] [Abstract][Full Text] [Related]
2. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. Aplin M; Christensen GL; Schneider M; Heydorn A; Gammeltoft S; Kjølbye AL; Sheikh SP; Hansen JL Basic Clin Pharmacol Toxicol; 2007 May; 100(5):296-301. PubMed ID: 17448114 [TBL] [Abstract][Full Text] [Related]
3. The signalling profile of recombinant human orexin-2 receptor. Tang J; Chen J; Ramanjaneya M; Punn A; Conner AC; Randeva HS Cell Signal; 2008 Sep; 20(9):1651-61. PubMed ID: 18599270 [TBL] [Abstract][Full Text] [Related]
4. Agonist-induced internalization of histamine H2 receptor and activation of extracellular signal-regulated kinases are dynamin-dependent. Xu AJ; Kuramasu A; Maeda K; Kinoshita K; Takayanagi S; Fukushima Y; Watanabe T; Yanagisawa T; Sukegawa J; Yanai K J Neurochem; 2008 Oct; 107(1):208-17. PubMed ID: 18691388 [TBL] [Abstract][Full Text] [Related]
5. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B. Ramanjaneya M; Conner AC; Chen J; Kumar P; Brown JE; Jöhren O; Lehnert H; Stanfield PR; Randeva HS J Endocrinol; 2009 Aug; 202(2):249-61. PubMed ID: 19460850 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms and functions of agonist-independent activation in the angiotensin II type 1 receptor. Akazawa H; Yasuda N; Komuro I Mol Cell Endocrinol; 2009 Apr; 302(2):140-7. PubMed ID: 19059460 [TBL] [Abstract][Full Text] [Related]
7. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Higuchi S; Ohtsu H; Suzuki H; Shirai H; Frank GD; Eguchi S Clin Sci (Lond); 2007 Apr; 112(8):417-28. PubMed ID: 17346243 [TBL] [Abstract][Full Text] [Related]
9. Pharmacologic perspectives of functional selectivity by the angiotensin II type 1 receptor. Aplin M; Christensen GL; Hansen JL Trends Cardiovasc Med; 2008 Nov; 18(8):305-12. PubMed ID: 19345318 [TBL] [Abstract][Full Text] [Related]
10. When 6 is 9: 'uncoupled' AT1 receptors turn signalling on its head. Thomas WG; Qian H; Smith NJ Cell Mol Life Sci; 2004 Nov; 61(21):2687-94. PubMed ID: 15549169 [TBL] [Abstract][Full Text] [Related]
11. PKC isoenzymes differentially modulate the effect of thrombin on MAPK-dependent RPE proliferation. Palma-Nicolas JP; López E; López-Colomé AM Biosci Rep; 2008 Dec; 28(6):307-17. PubMed ID: 18636965 [TBL] [Abstract][Full Text] [Related]
12. PKC-dependent extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on AngiotensinII-induced proliferation of vascular smooth muscle cells. Wang Y; Yan T; Wang Q; Wang W; Xu J; Wu X; Ji H Biochem Biophys Res Commun; 2008 Oct; 375(1):151-5. PubMed ID: 18687307 [TBL] [Abstract][Full Text] [Related]
13. Angiotensin II AT1 receptor constitutive activation: from molecular mechanisms to pathophysiology. Petrel C; Clauser E Mol Cell Endocrinol; 2009 Apr; 302(2):176-84. PubMed ID: 19061936 [TBL] [Abstract][Full Text] [Related]
14. Interaction of antiflammin-1 with uteroglobin-binding protein induces phosphorylation of ERK1/2 in NIH 3T3 cells. Li C; Han J; Li L; Yue S; Li J; Feng D; Liu H; Jiang D; Qin X; Luo Z Peptides; 2007 Nov; 28(11):2137-45. PubMed ID: 17928103 [TBL] [Abstract][Full Text] [Related]
15. Assessment of inverse agonism for the angiotensin II type 1 receptor. Akazawa H; Yasuda N; Miura S; Komuro I Methods Enzymol; 2010; 485():25-35. PubMed ID: 21050909 [TBL] [Abstract][Full Text] [Related]
16. Systemic analysis of TGFbeta proteomics revealed involvement of Plag1/CNK1/RASSF1A/Src network in TGFbeta1-dependent activation of Erk1/2 and cell proliferation. Bhaskaran N; Souchelnytskyi S Proteomics; 2008 Nov; 8(21):4507-20. PubMed ID: 18821524 [TBL] [Abstract][Full Text] [Related]
17. Multivalent ligand-receptor interactions elicit inverse agonist activity of AT(1) receptor blockers against stretch-induced AT(1) receptor activation. Qin Y; Yasuda N; Akazawa H; Ito K; Kudo Y; Liao CH; Yamamoto R; Miura S; Saku K; Komuro I Hypertens Res; 2009 Oct; 32(10):875-83. PubMed ID: 19662020 [TBL] [Abstract][Full Text] [Related]
18. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Chan DW; Liu VW; Tsao GS; Yao KM; Furukawa T; Chan KK; Ngan HY Carcinogenesis; 2008 Sep; 29(9):1742-50. PubMed ID: 18632752 [TBL] [Abstract][Full Text] [Related]
19. Aldosterone induces collagen synthesis via activation of extracellular signal-regulated kinase 1 and 2 in renal proximal tubules. Xu G; Liu A; Liu X Nephrology (Carlton); 2008 Dec; 13(8):694-701. PubMed ID: 19154323 [TBL] [Abstract][Full Text] [Related]
20. Pharmacology of 5HT(2C) receptor-mediated ERK1/2 phosphorylation: agonist-specific activation pathways and the impact of RNA editing. Werry TD; Stewart GD; Crouch MF; Watts A; Sexton PM; Christopoulos A Biochem Pharmacol; 2008 Nov; 76(10):1276-87. PubMed ID: 18812172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]