BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 18565594)

  • 1. Detection of Foxp3 protein expression in porcine T lymphocytes.
    Käser T; Gerner W; Hammer SE; Patzl M; Saalmüller A
    Vet Immunol Immunopathol; 2008 Sep; 125(1-2):92-101. PubMed ID: 18565594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25- T lymphocytes.
    Brillard E; Pallandre JR; Chalmers D; Ryffel B; Radlovic A; Seilles E; Rohrlich PS; Pivot X; Tiberghien P; Saas P; Borg C
    Exp Hematol; 2007 Mar; 35(3):416-25. PubMed ID: 17309822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterisation of porcine Forkhead-box p3 (Foxp3).
    Bolzer K; Käser T; Saalmüller A; Hammer SE
    Vet Immunol Immunopathol; 2009 Dec; 132(2-4):275-81. PubMed ID: 19545910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subpopulations of equine blood lymphocytes expressing regulatory T cell markers.
    Robbin MG; Wagner B; Noronha LE; Antczak DF; de Mestre AM
    Vet Immunol Immunopathol; 2011 Mar; 140(1-2):90-101. PubMed ID: 21208665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of inducible CD4+CD25+Foxp3+ regulatory T lymphocytes by porcine reproductive and respiratory syndrome virus (PRRSV).
    Wongyanin P; Buranapraditkun S; Chokeshai-Usaha K; Thanawonguwech R; Suradhat S
    Vet Immunol Immunopathol; 2010 Feb; 133(2-4):170-82. PubMed ID: 19709757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxp3 expression on normal and leukemic CD4+CD25+ T cells implicated in human T-cell leukemia virus type-1 is inconsistent with Treg cells.
    Abe M; Uchihashi K; Kazuto T; Osaka A; Yanagihara K; Tsukasaki K; Hasegawa H; Yamada Y; Kamihira S
    Eur J Haematol; 2008 Sep; 81(3):209-17. PubMed ID: 18510697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis.
    Sugimoto N; Oida T; Hirota K; Nakamura K; Nomura T; Uchiyama T; Sakaguchi S
    Int Immunol; 2006 Aug; 18(8):1197-209. PubMed ID: 16772372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human.
    Kang N; Tang L; Li X; Wu D; Li W; Chen X; Cui L; Ba D; He W
    Immunol Lett; 2009 Aug; 125(2):105-13. PubMed ID: 19539651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOXP3 expression in blood, synovial fluid and synovial tissue during inflammatory arthritis and intra-articular corticosteroid treatment.
    Raghavan S; Cao D; Widhe M; Roth K; Herrath J; Engström M; Roncador G; Banham AH; Trollmo C; Catrina AI; Malmström V
    Ann Rheum Dis; 2009 Dec; 68(12):1908-15. PubMed ID: 19066178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique phenotype of human tonsillar and in vitro-induced FOXP3+CD8+ T cells.
    Siegmund K; Rückert B; Ouaked N; Bürgler S; Speiser A; Akdis CA; Schmidt-Weber CB
    J Immunol; 2009 Feb; 182(4):2124-30. PubMed ID: 19201865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive detection of Foxp3 expression in bovine lymphocytes by flow cytometry.
    Gerner W; Stadler M; Hammer SE; Klein D; Saalmüller A
    Vet Immunol Immunopathol; 2010 Nov; 138(1-2):154-8. PubMed ID: 20701981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of FoxP3 expression to identify regulatory T cells in healthy dogs and dogs with cancer.
    Biller BJ; Elmslie RE; Burnett RC; Avery AC; Dow SW
    Vet Immunol Immunopathol; 2007 Mar; 116(1-2):69-78. PubMed ID: 17224188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent thymic origin, differentiation, and turnover of regulatory T cells.
    Mabarrack NH; Turner NL; Mayrhofer G
    J Leukoc Biol; 2008 Nov; 84(5):1287-97. PubMed ID: 18682578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of CD4+ FOXP3+ T-cell clones established from chronic inflammatory lesions.
    Okui T; Ito H; Honda T; Amanuma R; Yoshie H; Yamazaki K
    Oral Microbiol Immunol; 2008 Feb; 23(1):49-54. PubMed ID: 18173798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic and functional characterisation of porcine CD4(+)CD25(high) regulatory T cells.
    Käser T; Gerner W; Hammer SE; Patzl M; Saalmüller A
    Vet Immunol Immunopathol; 2008 Mar; 122(1-2):153-8. PubMed ID: 17868905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of mouse CD4(+)CD25(+)Foxp3(+) regulatory T cells in xenogeneic pig thymic grafts.
    Zhang B; Zhang A; Qu Y; Liu J; Niu Z; Zhao Y
    Transpl Immunol; 2009 Jan; 20(3):180-5. PubMed ID: 18845256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of CD4+CD25 high Foxp3+ T cells in ovine peripheral blood.
    Rocchi MS; Wattegedera SR; Frew D; Entrican G; Huntley JF; McNeilly TN
    Vet Immunol Immunopathol; 2011 Nov; 144(1-2):172-7. PubMed ID: 21831456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells.
    Yan B; Ye S; Chen G; Kuang M; Shen N; Chen S
    Arthritis Rheum; 2008 Mar; 58(3):801-12. PubMed ID: 18311820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation.
    Hoffmann P; Boeld TJ; Eder R; Huehn J; Floess S; Wieczorek G; Olek S; Dietmaier W; Andreesen R; Edinger M
    Eur J Immunol; 2009 Apr; 39(4):1088-97. PubMed ID: 19283780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression.
    Shen LS; Wang J; Shen DF; Yuan XL; Dong P; Li MX; Xue J; Zhang FM; Ge HL; Xu D
    Clin Immunol; 2009 Apr; 131(1):109-18. PubMed ID: 19153062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.