BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18565916)

  • 1. Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy.
    Ayala-Hernandez I; Goff HD; Corredig M
    J Dairy Sci; 2008 Jul; 91(7):2583-90. PubMed ID: 18565916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of bacterial exopolysaccharides in dairy products using confocal scanning laser microscopy.
    Hassan AN; Frank JF; Qvist KB
    J Dairy Sci; 2002 Jul; 85(7):1705-8. PubMed ID: 12201520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADSA Foundation Scholar Award: Possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods.
    Hassan AN
    J Dairy Sci; 2008 Apr; 91(4):1282-98. PubMed ID: 18349221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells.
    Zhang JS; Corredig M; Morales-Rayas R; Hassan A; Griffiths MW; LaPointe G
    J Dairy Sci; 2019 Aug; 102(8):6802-6819. PubMed ID: 31202650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of functional characteristics of mixed lactic culture producing nisin z and exopolysaccharides during continuous prefermentation of milk with immobilized cells.
    Grattepanche F; Audet P; Lacroix C
    J Dairy Sci; 2007 Dec; 90(12):5361-73. PubMed ID: 18024726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel technique for differentiation of proteins in the development of acid gel structure from control and heat treated milk using confocal scanning laser microscopy.
    Dubert-Ferrandon A; Niranjan K; Grandison AS
    J Dairy Res; 2006 Nov; 73(4):423-30. PubMed ID: 16834815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved growth of bifidobacteria by cocultivation with Lactococcus lactis subspecies lactis.
    Yonezawa S; Xiao JZ; Odamaki T; Ishida T; Miyaji K; Yamada A; Yaeshima T; Iwatsuki K
    J Dairy Sci; 2010 May; 93(5):1815-23. PubMed ID: 20412895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exopolysaccharide-producing mesophilic lactic cultures for preparation of fat-free Dahi - an Indian fermented milk.
    Behare P; Singh R; Singh RP
    J Dairy Res; 2009 Feb; 76(1):90-7. PubMed ID: 19121242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis.
    Tarazanova M; Huppertz T; Kok J; Bachmann H
    Microb Biotechnol; 2018 Jul; 11(4):770-780. PubMed ID: 29745037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior and viability of spontaneous oxidative stress-resistant Lactococcus lactis mutants in experimental fermented milk processing.
    Oliveira MN; Almeida KE; Damin MR; Rochat T; Gratadoux JJ; Miyoshi A; Langella P; Azevedo V
    Genet Mol Res; 2009 Jul; 8(3):840-7. PubMed ID: 19731206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium.
    Vaningelgem F; Zamfir M; Adriany T; De Vuyst L
    J Appl Microbiol; 2004; 97(6):1257-73. PubMed ID: 15546417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions in biofilms of Lactococcus lactis ssp. cremoris and Pseudomonas fluorescens cultured in cold UHT milk.
    Kives J; Guadarrama D; Orgaz B; Rivera-Sen A; Vazquez J; SanJose C
    J Dairy Sci; 2005 Dec; 88(12):4165-71. PubMed ID: 16291607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains.
    Rodríguez-Figueroa JC; González-Córdova AF; Astiazaran-García H; Hernández-Mendoza A; Vallejo-Cordoba B
    J Dairy Sci; 2013 Jul; 96(7):4094-9. PubMed ID: 23628247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization.
    Knoshaug EP; Ahlgren JA; Trempy JE
    Appl Environ Microbiol; 2007 Feb; 73(3):897-905. PubMed ID: 17122391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: development of a new starter culture.
    Kimoto-Nira H; Aoki R; Mizumachi K; Sasaki K; Naito H; Sawada T; Suzuki C
    J Dairy Sci; 2012 Apr; 95(4):2176-85. PubMed ID: 22459863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel exopolysaccharides produced by Lactococcus lactis subsp. lactis, and the diversity of epsE genes in the exopolysaccharide biosynthesis gene clusters.
    Suzuki C; Kobayashi M; Kimoto-Nira H
    Biosci Biotechnol Biochem; 2013; 77(10):2013-8. PubMed ID: 24096663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short communication: Presence of Lactococcus and lactococcal exopolysaccharide operons on the leaves of Pinguicula vulgaris supports the traditional source of bacteria present in Scandinavian ropy fermented milk.
    Porcellato D; Tranvåg M; Narvhus J
    J Dairy Sci; 2016 Sep; 99(9):7049-7052. PubMed ID: 27423953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic and molecular characterization of Lactococcus lactis from milk and plants.
    Nomura M; Kobayashi M; Narita T; Kimoto-Nira H; Okamoto T
    J Appl Microbiol; 2006 Aug; 101(2):396-405. PubMed ID: 16882147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On heating milk, the dissociation of kappa-casein from the casein micelles can precede interactions with the denatured whey proteins.
    Anema SG
    J Dairy Res; 2008 Nov; 75(4):415-21. PubMed ID: 18701003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris Ropy352.
    Knoshaug EP; Ahlgren JA; Trempy JE
    J Dairy Sci; 2000 Apr; 83(4):633-40. PubMed ID: 10791777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.