BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 18565916)

  • 21. Microbiological quality of fermented milk produced by repeated-batch culture.
    Nakasaki K; Yanagisawa M; Kobayashi K
    J Biosci Bioeng; 2008 Jan; 105(1):73-6. PubMed ID: 18295725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review.
    Broadbent JR; McMahon DJ; Welker DL; Oberg CJ; Moineau S
    J Dairy Sci; 2003 Feb; 86(2):407-23. PubMed ID: 12647947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved viability of bifidobacteria in fermented milk by cocultivation with Lactococcus lactis subspecies lactis.
    Odamaki T; Xiao JZ; Yonezawa S; Yaeshima T; Iwatsuki K
    J Dairy Sci; 2011 Mar; 94(3):1112-21. PubMed ID: 21338777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nisin and lacticin 481 coproduction by Lactococcus lactis strains isolated from raw ewes' milk.
    Bravo D; Rodríguez E; Medina M
    J Dairy Sci; 2009 Oct; 92(10):4805-11. PubMed ID: 19762795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.
    Dewan S; Tamang JP
    Antonie Van Leeuwenhoek; 2007 Oct; 92(3):343-52. PubMed ID: 17562218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypotensive and heart rate-lowering effects in rats receiving milk fermented by specific Lactococcus lactis strains.
    Rodríguez-Figueroa JC; González-Córdova AF; Astiazaran-García H; Vallejo-Cordoba B
    Br J Nutr; 2013 Mar; 109(5):827-33. PubMed ID: 23168230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a new method for determination of exopolysaccharide quantity in fermented milk products and its application in technology of kefir production.
    Enikeev R
    Food Chem; 2012 Oct; 134(4):2437-41. PubMed ID: 23442707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili.
    Kahala M; Mäki M; Lehtovaara A; Tapanainen JM; Katiska R; Juuruskorpi M; Juhola J; Joutsjoki V
    J Appl Microbiol; 2008 Dec; 105(6):1929-38. PubMed ID: 19120639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides.
    Hassan AN; Ipsen R; Janzen T; Qvist KB
    J Dairy Sci; 2003 May; 86(5):1632-8. PubMed ID: 12778573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capsular polysaccharide of a slime-forming Lactococcus lactis ssp. cremoris LAPT 3001 isolated from Swedish fermented milk 'långfil'.
    Toba T; Kotani T; Adachi S
    Int J Food Microbiol; 1991 Feb; 12(2-3):167-71. PubMed ID: 1904758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili.
    Kitazawa H; Yamaguchi T; Miura M; Saito T; Itoh T
    J Dairy Sci; 1993 Jun; 76(6):1514-9. PubMed ID: 8326024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Safety assessment of dairy microorganisms: the Lactococcus genus.
    Casalta E; Montel MC
    Int J Food Microbiol; 2008 Sep; 126(3):271-3. PubMed ID: 17976847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture.
    Grattepanche F; Lacroix C; Audet P; Lapointe G
    Appl Microbiol Biotechnol; 2005 Jan; 66(4):414-21. PubMed ID: 15599522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fuzzy logic-based model for the multistage high-pressure inactivation of Lactococcus lactis ssp. cremoris MG 1363.
    Kilimann KV; Hartmann C; Delgado A; Vogel RF; Gänzle MG
    Int J Food Microbiol; 2005 Jan; 98(1):89-105. PubMed ID: 15617804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of exopolysaccharides by two strains of Lactobacillus bulgaricus in whey-based media.
    Iliev I; Radoilska E; Ivanova I; Enikova R
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):511-6. PubMed ID: 15954646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of oligosaccharides in skim milk fermented with mixed dahi cultures, Lactococcus lactis ssp diacetylactis and probiotic strains of lactobacilli.
    Yadav H; Jain S; Sinha PR
    J Dairy Res; 2007 May; 74(2):154-9. PubMed ID: 17291388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production.
    Dimitrellou D; Kourkoutas Y; Koutinas AA; Kanellaki M
    Food Microbiol; 2009 Dec; 26(8):809-20. PubMed ID: 19835765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oral administration of milk fermented with Lactococcus lactis subsp. cremoris FC protects mice against influenza virus infection.
    Maruo T; Gotoh Y; Nishimura H; Ohashi S; Toda T; Takahashi K
    Lett Appl Microbiol; 2012 Aug; 55(2):135-40. PubMed ID: 22642647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis.
    Tuinier R; van Casteren WH; Looijesteijn PJ; Schols HA; Voragen AG; Zoon P
    Biopolymers; 2001 Sep; 59(3):160-6. PubMed ID: 11391565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exopolysaccharides modify functional properties of whey protein concentrate.
    Deep G; Hassan AN; Metzger L
    J Dairy Sci; 2012 Nov; 95(11):6332-8. PubMed ID: 22939784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.