BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18566002)

  • 1. Temperature-sensitive TREK currents contribute to setting the resting membrane potential in embryonic atrial myocytes.
    Zhang H; Shepherd N; Creazzo TL
    J Physiol; 2008 Aug; 586(15):3645-56. PubMed ID: 18566002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental expression of a functional TASK-1 2P domain K+ channel in embryonic chick heart.
    Zhang H; Parker J; Shepherd N; Creazzo TL
    J Biomed Sci; 2009 Nov; 16(1):104. PubMed ID: 19930646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of a TREK-like K+ channel current by noradrenaline requires both β1- and β2-adrenoceptors in rat atrial myocytes.
    Bond RC; Choisy SC; Bryant SM; Hancox JC; James AF
    Cardiovasc Res; 2014 Oct; 104(1):206-15. PubMed ID: 25205295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle.
    Bodnár M; Schlichthörl G; Daut J
    Pflugers Arch; 2015 May; 467(5):1069-79. PubMed ID: 25539776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle.
    Xian Tao Li ; Dyachenko V; Zuzarte M; Putzke C; Preisig-Müller R; Isenberg G; Daut J
    Cardiovasc Res; 2006 Jan; 69(1):86-97. PubMed ID: 16248991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics.
    Terrenoire C; Lauritzen I; Lesage F; Romey G; Lazdunski M
    Circ Res; 2001 Aug; 89(4):336-42. PubMed ID: 11509450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanosensitive TREK-1 two-pore-domain potassium (K
    Wiedmann F; Rinné S; Donner B; Decher N; Katus HA; Schmidt C
    Prog Biophys Mol Biol; 2021 Jan; 159():126-135. PubMed ID: 32553901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TREK-1 currents in smooth muscle cells from pregnant human myometrium.
    Heyman NS; Cowles CL; Barnett SD; Wu YY; Cullison C; Singer CA; Leblanc N; Buxton IL
    Am J Physiol Cell Physiol; 2013 Sep; 305(6):C632-42. PubMed ID: 23804201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of KCNQ and TREK Channels to the Resting Membrane Potential in Sympathetic Neurons at Physiological Temperature.
    Rivas-Ramírez P; Reboreda A; Rueda-Ruzafa L; Herrera-Pérez S; Lamas JA
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32806753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the mechanosensitive 2PK+ channel TREK-1 in human osteoblasts.
    Hughes S; Magnay J; Foreman M; Publicover SJ; Dobson JP; El Haj AJ
    J Cell Physiol; 2006 Mar; 206(3):738-48. PubMed ID: 16250016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
    Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac expression and atrial fibrillation-associated remodeling of K₂p2.1 (TREK-1) K⁺ channels in a porcine model.
    Schmidt C; Wiedmann F; Tristram F; Anand P; Wenzel W; Lugenbiel P; Schweizer PA; Katus HA; Thomas D
    Life Sci; 2014 Mar; 97(2):107-15. PubMed ID: 24345461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ and K+ channels of normal human adrenal zona fasciculata cells: properties and modulation by ACTH and AngII.
    Enyeart JJ; Enyeart JA
    J Gen Physiol; 2013 Aug; 142(2):137-55. PubMed ID: 23858003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and electrophysiological characteristics of K+ conductance sensitive to acidic pH in aortic smooth muscle cells of WKY and SHR.
    Kiyoshi H; Yamazaki D; Ohya S; Kitsukawa M; Muraki K; Saito SY; Ohizumi Y; Imaizumi Y
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2723-34. PubMed ID: 16815980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stretch-dependent potassium channel TREK-1 and its function in murine myometrium.
    Monaghan K; Baker SA; Dwyer L; Hatton WC; Sik Park K; Sanders KM; Koh SD
    J Physiol; 2011 Mar; 589(Pt 5):1221-33. PubMed ID: 21224218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An increased TREK-1-like potassium current in ventricular myocytes during rat cardiac hypertrophy.
    Wang W; Zhang M; Li P; Yuan H; Feng N; Peng Y; Wang L; Wang X
    J Cardiovasc Pharmacol; 2013 Apr; 61(4):302-10. PubMed ID: 23232841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymodal Mechanism for TWIK-Related K+ Channel Inhibition by Local Anesthetic.
    Pavel MA; Chung HW; Petersen EN; Hansen SB
    Anesth Analg; 2019 Oct; 129(4):973-982. PubMed ID: 31124840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.
    Aller MI; Wisden W
    Neuroscience; 2008 Feb; 151(4):1154-72. PubMed ID: 18222039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingosine-1-phosphate effects on guinea pig atrial myocytes: Alterations in action potentials and K+ currents.
    Ochi R; Momose Y; Oyama K; Giles WR
    Cardiovasc Res; 2006 Apr; 70(1):88-96. PubMed ID: 16545787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle.
    Tan JH; Liu W; Saint DA
    Exp Physiol; 2004 May; 89(3):237-42. PubMed ID: 15123558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.