These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1856681)

  • 1. Effect of iron deprivation on surface composition and virulence determinants of Candida albicans.
    Sweet SP; Douglas LJ
    J Gen Microbiol; 1991 Apr; 137(4):859-65. PubMed ID: 1856681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of iron concentration on siderophore synthesis and pigment production by Candida albicans.
    Sweet SP; Douglas LJ
    FEMS Microbiol Lett; 1991 May; 64(1):87-91. PubMed ID: 1830280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida albicans iron acquisition within the host.
    Almeida RS; Wilson D; Hube B
    FEMS Yeast Res; 2009 Oct; 9(7):1000-12. PubMed ID: 19788558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.
    Knight SA; Vilaire G; Lesuisse E; Dancis A
    Infect Immun; 2005 Sep; 73(9):5482-92. PubMed ID: 16113264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of plasma proteins to Candida species in vitro.
    Page S; Odds FC
    J Gen Microbiol; 1988 Oct; 134(10):2693-702. PubMed ID: 3076172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of growth conditions on Candida albicans adhesion, hydrophobicity and cell wall ultrastructure.
    Kennedy MJ; Sandin RL
    J Med Vet Mycol; 1988 Apr; 26(2):79-92. PubMed ID: 3047356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida albicans: adherence, signaling and virulence.
    Calderone R; Suzuki S; Cannon R; Cho T; Boyd D; Calera J; Chibana H; Herman D; Holmes A; Jeng HW; Kaminishi H; Matsumoto T; Mikami T; O'Sullivan JM; Sudoh M; Suzuki M; Nakashima Y; Tanaka T; Tompkins GR; Watanabe T
    Med Mycol; 2000; 38 Suppl 1():125-37. PubMed ID: 11204138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory networks affected by iron availability in Candida albicans.
    Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N
    Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans.
    Thewes S; Moran GP; Magee BB; Schaller M; Sullivan DJ; Hube B
    BMC Microbiol; 2008 Oct; 8():187. PubMed ID: 18950481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between cell surface composition, adherence, and virulence of Candida albicans.
    McCourtie J; Douglas LJ
    Infect Immun; 1984 Jul; 45(1):6-12. PubMed ID: 6376361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall mannoproteins in cells from colonial phenotypic variants of Candida albicans.
    Martinez JP; Gil ML; Casanova M; Lopez-Ribot JL; Garcia De Lomas J; Sentandreu R
    J Gen Microbiol; 1990 Dec; 136(12):2421-32. PubMed ID: 2079629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of iron depletion on cell-wall antigens of Candida albicans.
    Paul TR; Smith SN; Brown MR
    J Med Microbiol; 1989 Feb; 28(2):93-100. PubMed ID: 2644436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human oral keratinocyte E-cadherin degradation by Candida albicans and Candida glabrata.
    Pärnänen P; Meurman JH; Samaranayake L; Virtanen I
    J Oral Pathol Med; 2010 Mar; 39(3):275-8. PubMed ID: 20359311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Csa2, a member of the Rbt5 protein family, is involved in the utilization of iron from human hemoglobin during Candida albicans hyphal growth.
    Okamoto-Shibayama K; Kikuchi Y; Kokubu E; Sato Y; Ishihara K
    FEMS Yeast Res; 2014 Jun; 14(4):674-7. PubMed ID: 24796871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.
    Jeeves RE; Mason RP; Woodacre A; Cashmore AM
    Yeast; 2011 Sep; 28(9):629-44. PubMed ID: 21823165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adherence of cell surface mutants of Candida albicans to buccal epithelial cells and analyses of the cell surface proteins of the mutants.
    Fukayama M; Calderone RA
    Infect Immun; 1991 Apr; 59(4):1341-5. PubMed ID: 2004814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apotransferrin has a second mechanism for anticandidal activity through binding of Candida albicans.
    Han Y
    Arch Pharm Res; 2014 Feb; 37(2):270-5. PubMed ID: 24155020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The identification of surface interaction of apotransferrin with Candida albicans.
    Han Y
    Arch Pharm Res; 2014 Oct; 37(10):1301-7. PubMed ID: 24263410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistency of protein patterns in Candida albicans during hyphal septum and branch formation.
    Sevilla MJ; Odds FC
    J Med Vet Mycol; 1986 Oct; 24(5):419-22. PubMed ID: 3537264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of glycosides as epithelial cell receptors for Candida albicans.
    Critchley IA; Douglas LJ
    J Gen Microbiol; 1987 Mar; 133(3):637-43. PubMed ID: 3309164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.