BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18566935)

  • 1. Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities.
    Chin CA; Barreto A; Cremades JG; Adjouadi M
    J Rehabil Res Dev; 2008; 45(1):161-74. PubMed ID: 18566935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The integration of electromyogram and eye gaze tracking inputs for hands-free cursor control.
    Chin CA; Barreto A
    Biomed Sci Instrum; 2007; 43():152-7. PubMed ID: 17487073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hybrid electromyogram/Eye Gaze Tracking cursor control system for hands-free computer interaction.
    Chin CA; Barreto A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2296-9. PubMed ID: 17946102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing interoperability between video-oculographic and electromyographic systems.
    Navallas J; Ariz M; Villanueva A; San Agustín J; Cabeza R
    J Rehabil Res Dev; 2011; 48(3):253-65. PubMed ID: 21480100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced real-time cursor control algorithm, based on the spectral analysis of electromyograms.
    Chin CA; Barreto A; Adjouadi M
    Biomed Sci Instrum; 2006; 42():249-54. PubMed ID: 16817616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hands-free human computer interaction via an electromyogram-based classification algorithm.
    Chin C; Barreto A; Li C; Zhai J
    Biomed Sci Instrum; 2005; 41():31-6. PubMed ID: 15850078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.
    Sesin A; Adjouadi M; Cabrerizo M; Ayala M; Barreto A
    J Rehabil Res Dev; 2008; 45(6):801-17. PubMed ID: 19009467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target selection by gaze pointing and manual confirmation: performance improved by locking the gaze cursor.
    Zhang S; Tian Y; Wang C; Wei K
    Ergonomics; 2020 Jul; 63(7):884-895. PubMed ID: 32348191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrete Versus Continuous Mapping of Facial Electromyography for Human-Machine Interface Control: Performance and Training Effects.
    Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):572-80. PubMed ID: 25616053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete vs. continuous surface electromyographic interface control.
    Cler MJ; Michener CM; Stepp CE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4374-7. PubMed ID: 25570961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal coupling of eye gaze and cursor on key buttons during text-entry tasks.
    Hong SK; Myung R
    Percept Mot Skills; 2014 Feb; 118(1):86-95. PubMed ID: 24724515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of EOG-based communication system controlled by eight-directional eye movements.
    Yamagishi K; Hori J; Miyakawa M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2574-7. PubMed ID: 17945724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of facial electromyography in computer mouse access for people with disabilities.
    Huang CN; Chen CH; Chung HY
    Disabil Rehabil; 2006 Feb; 28(4):231-7. PubMed ID: 16467058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of head orientation and neck muscle EMG signals as command inputs to a human-computer interface for individuals with high tetraplegia.
    Williams MR; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):485-96. PubMed ID: 18990652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying gaze and mouse interactions on spatial visual interfaces with a new movement analytics methodology.
    Demšar U; Çöltekin A
    PLoS One; 2017; 12(8):e0181818. PubMed ID: 28777822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Optimal Facial Electromyographic Sensor Configurations for Human-Machine Interface Control.
    Vojtech JM; Cler GJ; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1566-1576. PubMed ID: 29994124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel eye gaze tracking techniques under natural head movement.
    Zhu Z; Ji Q
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2246-60. PubMed ID: 18075041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aiming accuracy of the line of gaze and redesign of the gaze-pointing system.
    Chi CF; Lin CL
    Percept Mot Skills; 1997 Dec; 85(3 Pt 1):1111-20. PubMed ID: 9399328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.