These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18566935)

  • 21. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-muscle-computer interface: mobile-phone prototype development and testing.
    Vernon S; Joshi SS
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):531-8. PubMed ID: 21571616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effectiveness of Gaze-Contingent Control in Computer Games.
    Orlov PA; Apraksin N
    Perception; 2015; 44(8-9):1136-45. PubMed ID: 26562927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cursor Click Modality in an Accelerometer-Based Computer Access Device.
    Groll MD; Hablani S; Vojtech JM; Stepp CE
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1566-1572. PubMed ID: 32634095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrode position optimization for facial EMG measurements for human-computer interface.
    Nöjd N; Hannula M; Narra N; Hyttinen J
    Methods Inf Med; 2008; 47(3):192-7. PubMed ID: 18473083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Eye movement detection with the aid of the oculogram in shifting the gaze].
    Belov DR; Eram SIu; Kolodiazhnyĭ SF; Kanunikov IE; Getmanenko OV
    Ross Fiziol Zh Im I M Sechenova; 2009 Apr; 95(4):347-58. PubMed ID: 19505037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EMG-based and gaze-tracking-based man-machine interfaces.
    Carpi F; Rossi DD
    Int Rev Neurobiol; 2009; 86():3-21. PubMed ID: 19607987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A free geometry model-independent neural eye-gaze tracking system.
    Gneo M; Schmid M; Conforto S; D'Alessio T
    J Neuroeng Rehabil; 2012 Nov; 9():82. PubMed ID: 23158726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A low cost human computer interface based on eye tracking.
    Hiley JB; Redekopp AH; Fazel-Rezai R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3226-9. PubMed ID: 17946167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring fixation disparity with infrared eye-trackers.
    De Luca M; Spinelli D; Zoccolotti P; Zeri F
    J Biomed Opt; 2009; 14(1):014013. PubMed ID: 19256701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and evaluation of a wireless interface for inputting characters using Laplacian EMG.
    Miyazawa K; Ueno A; Mori H; Hoshino H; Noshiro M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2518-21. PubMed ID: 17946120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ProtoMatch: a tool for analyzing high-density, sequential eye gaze and cursor protocols.
    Myers CW; Schoelles MJ
    Behav Res Methods; 2005 May; 37(2):256-70. PubMed ID: 16171198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative evaluation of a low-cost noninvasive hybrid interface based on EEG and eye movement.
    Kim M; Kim BH; Jo S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):159-68. PubMed ID: 25376041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.
    Corbett EA; Körding KP; Perreault EJ
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):674-83. PubMed ID: 23529107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Case study: Head orientation and neck electromyography for cursor control in persons with high cervical tetraplegia.
    Williams MR; Kirsch RF
    J Rehabil Res Dev; 2016; 53(4):519-30. PubMed ID: 27532681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the accuracy and reliability of remote system-calibration-free eye-gaze tracking.
    Hennessey CA; Lawrence PD
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1891-900. PubMed ID: 19272975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System.
    Gwon SY; Jung D; Pan W; Park KR
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26742045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fauxvea: Crowdsourcing Gaze Location Estimates for Visualization Analysis Tasks.
    Gomez SR; Jianu R; Cabeen R; Guo H; Laidlaw DH
    IEEE Trans Vis Comput Graph; 2017 Feb; 23(2):1042-1055. PubMed ID: 26915125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel approach for electromyography-controlled prostheses based on facial action.
    Zhang X; Li R; Li H; Lu Z; Hu Y; Alhassan AB
    Med Biol Eng Comput; 2020 Nov; 58(11):2685-2698. PubMed ID: 32862364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.