These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18566942)

  • 1. Treadmill training after spinal cord injury: it's not just about the walking.
    Hicks AL; Ginis KA
    J Rehabil Res Dev; 2008; 45(2):241-8. PubMed ID: 18566942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training of walking skills overground and on the treadmill: case series on individuals with incomplete spinal cord injury.
    Musselman KE; Fouad K; Misiaszek JE; Yang JF
    Phys Ther; 2009 Jun; 89(6):601-11. PubMed ID: 19423643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury.
    Hornby TG; Zemon DH; Campbell D
    Phys Ther; 2005 Jan; 85(1):52-66. PubMed ID: 15623362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being.
    Hicks AL; Adams MM; Martin Ginis K; Giangregorio L; Latimer A; Phillips SM; McCartney N
    Spinal Cord; 2005 May; 43(5):291-8. PubMed ID: 15685260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effects of body-weight-supported treadmill training and tilt-table standing on spasticity in individuals with chronic spinal cord injury.
    Adams MM; Hicks AL
    J Spinal Cord Med; 2011; 34(5):488-94. PubMed ID: 22118256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Body Weight-Supported Treadmill Training on Cardiovascular and Pulmonary Function in People With Spinal Cord Injury: A Systematic Review.
    Alajam R; Alqahtani AS; Liu W
    Top Spinal Cord Inj Rehabil; 2019; 25(4):355-369. PubMed ID: 31844387
    [No Abstract]   [Full Text] [Related]  

  • 8. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial.
    Dobkin B; Barbeau H; Deforge D; Ditunno J; Elashoff R; Apple D; Basso M; Behrman A; Harkema S; Saulino M; Scott M;
    Neurorehabil Neural Repair; 2007; 21(1):25-35. PubMed ID: 17172551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body weight supported treadmill training at very low treatment frequency for a young adult with incomplete cervical spinal cord injury.
    Young DL; Wallmann HW; Poole I; Threlkeld AJ
    NeuroRehabilitation; 2009; 25(4):261-70. PubMed ID: 20037219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term body-weight supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being.
    Wernig A
    Spinal Cord; 2006 Apr; 44(4):265-6; author reply 267-8. PubMed ID: 16158077
    [No Abstract]   [Full Text] [Related]  

  • 11. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review.
    Wessels M; Lucas C; Eriks I; de Groot S
    J Rehabil Med; 2010 Jun; 42(6):513-9. PubMed ID: 20549154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of forward versus backward walking using body weight supported treadmill training in an individual with a spinal cord injury: a single subject design.
    Moriello G; Pathare N; Cirone C; Pastore D; Shears D; Sulehri S
    Physiother Theory Pract; 2014 Jan; 30(1):29-37. PubMed ID: 23848575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial.
    Alexeeva N; Sames C; Jacobs PL; Hobday L; Distasio MM; Mitchell SA; Calancie B
    J Spinal Cord Med; 2011; 34(4):362-79. PubMed ID: 21903010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What Did We Learn from the Animal Studies of Body Weight-Supported Treadmill Training and Where Do We Go from Here?
    de Leon RD; Dy CJ
    J Neurotrauma; 2017 May; 34(9):1744-1750. PubMed ID: 27863455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using robot-applied resistance to augment body-weight-supported treadmill training in an individual with incomplete spinal cord injury.
    Lam T; Pauhl K; Krassioukov A; Eng JJ
    Phys Ther; 2011 Jan; 91(1):143-51. PubMed ID: 21127165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury.
    Field-Fote EC
    Phys Ther; 2000 May; 80(5):477-84. PubMed ID: 10792858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI.
    Wernig A
    Neurology; 2006 Nov; 67(10):1900; author reply 1900. PubMed ID: 17130441
    [No Abstract]   [Full Text] [Related]  

  • 18. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.
    Singh A; Balasubramanian S; Murray M; Lemay M; Houle J
    J Neurotrauma; 2011 Dec; 28(12):2405-16. PubMed ID: 21568686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.