BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 18566946)

  • 1. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation.
    Dudley-Javoroski S; Shields RK
    J Rehabil Res Dev; 2008; 45(2):283-96. PubMed ID: 18566946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    J Neurophysiol; 2006 Apr; 95(4):2380-90. PubMed ID: 16407424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
    Shields RK; Dudley-Javoroski S
    Neurorehabil Neural Repair; 2007; 21(2):169-79. PubMed ID: 17312092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscular, skeletal, and neural adaptations following spinal cord injury.
    Shields RK
    J Orthop Sports Phys Ther; 2002 Feb; 32(2):65-74. PubMed ID: 11838582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone adaptation to altered loading after spinal cord injury: a study of bone and muscle strength.
    Rittweger J; Gerrits K; Altenburg T; Reeves N; Maganaris CN; de Haan A
    J Musculoskelet Neuronal Interact; 2006; 6(3):269-76. PubMed ID: 17142949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury.
    Petrie MA; Suneja M; Faidley E; Shields RK
    PLoS One; 2014; 9(12):e115791. PubMed ID: 25531450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.
    Shields RK; Dudley-Javoroski S; Littmann AE
    J Appl Physiol (1985); 2006 Aug; 101(2):556-65. PubMed ID: 16575026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically induced muscle contractions influence bone density decline after spinal cord injury.
    Shields RK; Dudley-Javoroski S; Law LA
    Spine (Phila Pa 1976); 2006 Mar; 31(5):548-53. PubMed ID: 16508550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    J Musculoskelet Neuronal Interact; 2008; 8(3):227-38. PubMed ID: 18799855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Adaptations of the Musculoskeletal System after Spinal Cord Contusion and Transection in Rats.
    Lin CY; Androjna C; Rozic R; Nguyen B; Parsons B; Midura RJ; Lee YS
    J Neurotrauma; 2018 Aug; 35(15):1737-1744. PubMed ID: 29402167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury.
    Dudley-Javoroski S; Shields RK
    Phys Ther; 2008 Mar; 88(3):387-96. PubMed ID: 18202080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Exercise and Activity-Based Physical Therapy on Bone after Spinal Cord Injury.
    Sutor TW; Kura J; Mattingly AJ; Otzel DM; Yarrow JF
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive muscle plasticity of a remaining agonist following denervation of its close synergists in a model of complete spinal cord injury.
    Dambreville C; Charest J; Thibaudier Y; Hurteau MF; Kuczynski V; Grenier G; Frigon A
    J Neurophysiol; 2016 Sep; 116(3):1366-74. PubMed ID: 27358318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury.
    Coupaud S; McLean AN; Purcell M; Fraser MH; Allan DB
    Bone; 2015 May; 74():69-75. PubMed ID: 25596521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing.
    Dudley-Javoroski S; Littmann AE; Iguchi M; Shields RK
    J Appl Physiol (1985); 2008 Jun; 104(6):1574-82. PubMed ID: 18436697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle and bone adaptations after treadmill training in incomplete Spinal Cord Injury: a case study using peripheral Quantitative Computed Tomography.
    Coupaud S; Jack LP; Hunt KJ; Allan DB
    J Musculoskelet Neuronal Interact; 2009; 9(4):288-97. PubMed ID: 19949287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical stimulation for therapy and mobility after spinal cord injury.
    Stein RB; Chong SL; James KB; Kido A; Bell GJ; Tubman LA; Bélanger M
    Prog Brain Res; 2002; 137():27-34. PubMed ID: 12440357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of early therapeutic electrical stimulation on bone mineral density in the paralyzed limbs of the rabbit.
    Lee YH; Rah JH; Park RW; Park CI
    Yonsei Med J; 2001 Apr; 42(2):194-8. PubMed ID: 11371106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outcomes of a home cycling program using functional electrical stimulation or passive motion for children with spinal cord injury: a case series.
    Johnston TE; Smith BT; Oladeji O; Betz RR; Lauer RT
    J Spinal Cord Med; 2008; 31(2):215-21. PubMed ID: 18581671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-course response in serum markers of bone turnover to a single-bout of electrical stimulation in patients with recent spinal cord injury.
    Arija-Blázquez A; Ceruelo-Abajo S; Díaz-Merino MS; Godino-Durán JA; Martínez-Dhier L; Florensa-Vila J
    Eur J Appl Physiol; 2013 Jan; 113(1):89-97. PubMed ID: 22576416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.