BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 18567049)

  • 1. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution.
    Reetz MT; Zheng H
    Chembiochem; 2011 Jul; 12(10):1529-35. PubMed ID: 21567703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the efficiency of directed evolution in focused enzyme libraries by the adaptive substituent reordering algorithm.
    Feng X; Sanchis J; Reetz MT; Rabitz H
    Chemistry; 2012 Apr; 18(18):5646-54. PubMed ID: 22434591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of activity and enantioselectivity of the enzyme by protein engineering.
    Kotik M; Stepánek V; Kyslík P; Maresová H
    J Biotechnol; 2007 Oct; 132(1):8-15. PubMed ID: 17875334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution.
    Reetz MT; Torre C; Eipper A; Lohmer R; Hermes M; Brunner B; Maichele A; Bocola M; Arand M; Cronin A; Genzel Y; Archelas A; Furstoss R
    Org Lett; 2004 Jan; 6(2):177-80. PubMed ID: 14723522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of an enantioselective epoxide hydrolase: uncovering the source of enantioselectivity at each evolutionary stage.
    Reetz MT; Bocola M; Wang LW; Sanchis J; Cronin A; Arand M; Zou J; Archelas A; Bottalla AL; Naworyta A; Mowbray SL
    J Am Chem Soc; 2009 Jun; 131(21):7334-43. PubMed ID: 19469578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge-guided laboratory evolution of protein thermolability.
    Reetz MT; Soni P; Fernández L
    Biotechnol Bioeng; 2009 Apr; 102(6):1712-7. PubMed ID: 19072845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory evolution of an epoxide hydrolase - towards an enantioconvergent biocatalyst.
    Kotik M; Archelas A; Faměrová V; Oubrechtová P; Křen V
    J Biotechnol; 2011 Oct; 156(1):1-10. PubMed ID: 21854816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling.
    van Loo B; Spelberg JH; Kingma J; Sonke T; Wubbolts MG; Janssen DB
    Chem Biol; 2004 Jul; 11(7):981-90. PubMed ID: 15271356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes.
    Sun Z; Wikmark Y; Bäckvall JE; Reetz MT
    Chemistry; 2016 Apr; 22(15):5046-54. PubMed ID: 26914401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis.
    Zheng H; Reetz MT
    J Am Chem Soc; 2010 Nov; 132(44):15744-51. PubMed ID: 20958062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative homology modeling-inspired protein engineering for improvement of catalytic activity of Mugil cephalus epoxide hydrolase.
    Choi SH; Kim HS; Lee EY
    Biotechnol Lett; 2009 Oct; 31(10):1617-24. PubMed ID: 19547925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Different Strategies in Directed Evolution of Enzyme Stereoselectivity: Single- versus Double-Code Saturation Mutagenesis.
    Sun Z; Lonsdale R; Li G; Reetz MT
    Chembiochem; 2016 Oct; 17(19):1865-1872. PubMed ID: 27411213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes.
    Reetz MT
    Ernst Schering Found Symp Proc; 2007; (2):321-40. PubMed ID: 18642531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.