These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18567372)

  • 1. [Health effects of nanoparticles and nanomaterials (II) methods for measurement of nanoparticles and their presence in the air].
    Fujitani Y; Hirano S
    Nihon Eiseigaku Zasshi; 2008 May; 63(3):663-9. PubMed ID: 18567372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine and Ultrafine Aerosol in Ostrava Ambient Air.
    Lach K; Klouda K; Mička V; Hellebrandová L
    Cent Eur J Public Health; 2016 Dec; 24 Suppl():S51-S54. PubMed ID: 28160538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.
    Fujitani Y; Kobayashi T; Arashidani K; Kunugita N; Suemura K
    J Occup Environ Hyg; 2008 Jun; 5(6):380-9. PubMed ID: 18401789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable dehumidifiers as an original matrix for the study of inhalable nanoparticles in school.
    Silva LFO; Pinto D; Enders MSP; Hower JC; Flores EMM; Müller EI; Dotto GL
    Chemosphere; 2021 Jan; 262():127295. PubMed ID: 32536422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical studies of aerosols at Montreal Trudeau Airport: The importance of airborne nanoparticles containing metal contaminants.
    Rahim MF; Pal D; Ariya PA
    Environ Pollut; 2019 Mar; 246():734-744. PubMed ID: 30623829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.
    Leoni C; Pokorná P; Hovorka J; Masiol M; Topinka J; Zhao Y; Křůmal K; Cliff S; Mikuška P; Hopke PK
    Environ Pollut; 2018 Mar; 234():145-154. PubMed ID: 29175476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Airborne Nanoparticle Loss in Sampling Tubing.
    Tsai CS
    J Occup Environ Hyg; 2015; 12(8):D161-7. PubMed ID: 25746064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionality based detection of airborne engineered nanoparticles in quasi real time: a new type of detector and a new metric.
    Neubauer N; Seipenbusch M; Kasper G
    Ann Occup Hyg; 2013 Aug; 57(7):842-52. PubMed ID: 23504803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining NSAM and CPC concentrations to determine airborne nanoparticle count median diameter: Application to various laboratory and workplace aerosols.
    Bau S; Payet R; Toussaint A; Witschger O; Todea AM; Monz C; Asbach C
    J Occup Environ Hyg; 2018 Jun; 15(6):492-501. PubMed ID: 29580178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparability of portable nanoparticle exposure monitors.
    Asbach C; Kaminski H; von Barany D; Kuhlbusch TA; Monz C; Dziurowitz N; Pelzer J; Vossen K; Berlin K; Dietrich S; Götz U; Kiesling HJ; Schierl R; Dahmann D
    Ann Occup Hyg; 2012 Jul; 56(5):606-21. PubMed ID: 22752099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles.
    Schmoll LH; Peters TM; O'Shaughnessy PT
    J Occup Environ Hyg; 2010 Sep; 7(9):535-45. PubMed ID: 20614365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal evolution of nanoparticle aerosols in workplace exposure.
    Seipenbusch M; Binder A; Kasper G
    Ann Occup Hyg; 2008 Nov; 52(8):707-16. PubMed ID: 18927101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing exposure zones by different exposure metrics using statistical parameters: contrast and precision.
    Park JY; Ramachandran G; Raynor PC; Eberly LE; Olson G
    Ann Occup Hyg; 2010 Oct; 54(7):799-812. PubMed ID: 20584861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a diffusion charger for measuring aerosols in a workplace.
    Vosburgh DJ; Ku BK; Peters TM
    Ann Occup Hyg; 2014 May; 58(4):424-36. PubMed ID: 24458322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.