These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18567842)

  • 41. Cell imaging assays for G protein-coupled receptor internalization: application to high-throughput screening.
    Lee S; Howell B; Kunapuli P
    Methods Enzymol; 2006; 414():79-98. PubMed ID: 17110188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A time-resolved fluorescent lanthanide (Eu)-GTP binding assay for chemokine receptors as targets in drug discovery.
    Labrecque J; Wong RS; Fricker SP
    Methods Mol Biol; 2009; 552():153-69. PubMed ID: 19513648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellular and molecular biology of orphan G protein-coupled receptors.
    Oh DY; Kim K; Kwon HB; Seong JY
    Int Rev Cytol; 2006; 252():163-218. PubMed ID: 16984818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application.
    Kratochwil NA; Malherbe P; Lindemann L; Ebeling M; Hoener MC; Mühlemann A; Porter RH; Stahl M; Gerber PR
    J Chem Inf Model; 2005; 45(5):1324-36. PubMed ID: 16180909
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High throughput fluorescence polarization: a homogeneous alternative to radioligand binding for cell surface receptors.
    Allen M; Reeves J; Mellor G
    J Biomol Screen; 2000 Apr; 5(2):63-9. PubMed ID: 10803605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a homogeneous high throughput fluorescence polarization assay for G protein-coupled receptor binding.
    Lee PH; Bevis DJ
    J Biomol Screen; 2000 Dec; 5(6):415-19. PubMed ID: 11598459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two-photon excitation in fluorescence polarization receptor-ligand binding assay.
    Tirri ME; Huttunen RJ; Toivonen J; Härkönen PL; Soini JT; Hänninen PE
    J Biomol Screen; 2005 Jun; 10(4):314-9. PubMed ID: 15964932
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Label-free detection of small-molecule binding to a GPCR in the membrane environment.
    Heym RG; Hornberger WB; Lakics V; Terstappen GC
    Biochim Biophys Acta; 2015 Aug; 1854(8):979-86. PubMed ID: 25882196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-Throughput Fluorescence Polarization Assay to Identify Ligands Using Purified G Protein-Coupled Receptor.
    Heine P; Witt G; Gilardi A; Gribbon P; Kummer L; Plückthun A
    SLAS Discov; 2019 Oct; 24(9):915-927. PubMed ID: 30925845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analyzing binding data.
    Motulsky HJ; Neubig RR
    Curr Protoc Neurosci; 2010 Jul; Chapter 7():Unit 7.5. PubMed ID: 20578035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence Polarization (FP) Assays for Monitoring Peptide-Protein or Nucleic Acid-Protein Binding.
    Moerke NJ
    Curr Protoc Chem Biol; 2009 Dec; 1(1):1-15. PubMed ID: 23839960
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of Recombinant GPCR Proteins for Biophysical and Structural Studies Using Virus-like Particles.
    Aertgeerts K; Ho TT; Yan YG
    Methods Mol Biol; 2022; 2507():327-336. PubMed ID: 35773590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development and application of fluorescence polarization assays in drug discovery.
    Burke TJ; Loniello KR; Beebe JA; Ervin KM
    Comb Chem High Throughput Screen; 2003 May; 6(3):183-94. PubMed ID: 12678697
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polarization modulation adds little additional information to super-resolution fluorescence microscopy.
    Frahm L; Keller J
    Nat Methods; 2016 Jan; 13(1):7-8. PubMed ID: 26716556
    [No Abstract]   [Full Text] [Related]  

  • 55. Reply to "Polarization modulation adds little additional information to super-resolution fluorescence microscopy".
    Hafi N; Grunwald M; van den Heuvel LS; Aspelmeier T; Steinem C; Korte M; Munk A; Walla PJ
    Nat Methods; 2016 Jan; 13(1):8-9. PubMed ID: 26716557
    [No Abstract]   [Full Text] [Related]  

  • 56. Cell-Free Expression of GPCRs into Nanomembranes for Functional and Structural Studies.
    Umbach S; Dötsch V; Bernhard F
    Methods Mol Biol; 2022; 2507():405-424. PubMed ID: 35773595
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discovery of Fluorescence Polarization Probe for the ELISA-Based Antagonist Screening of α
    Ma Z; Liu Z; Jiang T; Zhang T; Zhang H; Du L; Li M
    ACS Med Chem Lett; 2016 Oct; 7(10):967-971. PubMed ID: 27774138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence labeling of the C-terminus of proteins with a puromycin analogue in cell-free translation systems.
    Nemoto N; Miyamoto-Sato E; Yanagawa H
    FEBS Lett; 1999 Nov; 462(1-2):43-6. PubMed ID: 10580088
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using Fluorescence Anisotropy for Ligand Binding Kinetics of Membrane Proteins.
    Swonger KN; Robinson AS
    Curr Protoc Protein Sci; 2018 Aug; 93(1):e63. PubMed ID: 30011127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Directly measured signals as response variables in fluorescence polarization ligand binding assays.
    Halfman CJ; Wong FC; Schneider AS
    Anal Chem; 1984 Aug; 56(9):1648-50. PubMed ID: 6486446
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.