These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18568404)
1. Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress. Miyama M; Tada Y Plant Mol Biol; 2008 Sep; 68(1-2):119-29. PubMed ID: 18568404 [TBL] [Abstract][Full Text] [Related]
2. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
3. De Novo Transcriptome Assembly, Functional Annotation, and Transcriptome Dynamics Analyses Reveal Stress Tolerance Genes in Mangrove Tree ( Miryeganeh M; Saze H Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576037 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Tada Y; Kashimura T Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358 [TBL] [Abstract][Full Text] [Related]
5. Salt-dependent increase in triterpenoids is reversible upon transfer to fresh water in mangrove plants Kandelia candel and Bruguiera gymnorrhiza. Basyuni M; Baba S; Kinjo Y; Putri LA; Hakim L; Oku H J Plant Physiol; 2012 Dec; 169(18):1903-8. PubMed ID: 22921677 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening. Yamanaka T; Miyama M; Tada Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):304-10. PubMed ID: 19202291 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. Fernandez P; Di Rienzo J; Fernandez L; Hopp HE; Paniego N; Heinz RA BMC Plant Biol; 2008 Jan; 8():11. PubMed ID: 18221554 [TBL] [Abstract][Full Text] [Related]
8. Fructose-2,6-bisphosphate contents were increased in response to salt, water and osmotic stress in leaves of Bruguiera gymnorrhiza by differential changes in the activity of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase. Banzai T; Hanagata N; Dubinsky Z; Karube I Plant Mol Biol; 2003 Sep; 53(1-2):51-9. PubMed ID: 14756306 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional homeostasis of a mangrove species, Ceriops tagal, in saline environments, as revealed by microarray analysis. Liang S; Fang L; Zhou R; Tang T; Deng S; Dong S; Huang Y; Zhong C; Shi S PLoS One; 2012; 7(5):e36499. PubMed ID: 22574172 [TBL] [Abstract][Full Text] [Related]
10. Comparative Proteomic Analysis Reveals the Regulatory Effects of H Liu YL; Shen ZJ; Simon M; Li H; Ma DN; Zhu XY; Zheng HL Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878013 [TBL] [Abstract][Full Text] [Related]
11. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars. Chakraborty K; Bhaduri D; Meena HN; Kalariya K Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338 [TBL] [Abstract][Full Text] [Related]
12. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996 [TBL] [Abstract][Full Text] [Related]
13. Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. Yang L; Jin Y; Huang W; Sun Q; Liu F; Huang X BMC Genomics; 2018 Sep; 19(1):717. PubMed ID: 30261913 [TBL] [Abstract][Full Text] [Related]
14. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. Chen P; Yan K; Shao H; Zhao S PLoS One; 2013; 8(12):e83227. PubMed ID: 24349468 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome Analysis of Ceriops tagal in Saline Environments Using RNA-Sequencing. Xiao X; Hong Y; Xia W; Feng S; Zhou X; Fu X; Zang J; Xiao Y; Niu X; Li C; Chen Y PLoS One; 2016; 11(12):e0167551. PubMed ID: 27936168 [TBL] [Abstract][Full Text] [Related]
16. Ecophysiological, transcriptomic and metabolomic analyses shed light on the response mechanism of Bruguiera gymnorhiza to upwelling stress. Li X; Wei L; Zhao H; Wang Y; Sun F; Wu M Plant Physiol Biochem; 2024 Oct; 215():109074. PubMed ID: 39213943 [TBL] [Abstract][Full Text] [Related]
17. Integrated physiological, biochemical, and transcriptomic analyses of Bruguiera gymnorhiza leaves under long-term copper stress: Stomatal size, wax crystals and composition. Shang C; Zhou Q; Nkoh JN; Liu J; Wang J; Hu Z; Hussain Q Ecotoxicol Environ Saf; 2024 Aug; 281():116609. PubMed ID: 38905937 [TBL] [Abstract][Full Text] [Related]
18. How Quercus ilex L. saplings face combined salt and ozone stress: a transcriptome analysis. Natali L; Vangelisti A; Guidi L; Remorini D; Cotrozzi L; Lorenzini G; Nali C; Pellegrini E; Trivellini A; Vernieri P; Landi M; Cavallini A; Giordani T BMC Genomics; 2018 Dec; 19(1):872. PubMed ID: 30514212 [TBL] [Abstract][Full Text] [Related]
19. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content. Hamouda I; Badri M; Mejri M; Cruz C; Siddique KH; Hessini K Plant Biol (Stuttg); 2016 May; 18(3):369-75. PubMed ID: 26588061 [TBL] [Abstract][Full Text] [Related]
20. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Popova OV; Yang O; Dietz KJ; Golldack D Gene; 2008 Nov; 423(2):142-8. PubMed ID: 18703123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]