These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1856870)

  • 1. Computational method for the design of enzymes with altered substrate specificity.
    Wilson C; Mace JE; Agard DA
    J Mol Biol; 1991 Jul; 220(2):495-506. PubMed ID: 1856870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity.
    Mace JE; Agard DA
    J Mol Biol; 1995 Dec; 254(4):720-36. PubMed ID: 7500345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional linkage between the active site of alpha-lytic protease and distant regions of structure: scanning alanine mutagenesis of a surface loop affects activity and substrate specificity.
    Mace JE; Wilk BJ; Agard DA
    J Mol Biol; 1995 Aug; 251(1):116-34. PubMed ID: 7643381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling side-chain conformation for homologous proteins using an energy-based rotamer search.
    Wilson C; Gregoret LM; Agard DA
    J Mol Biol; 1993 Feb; 229(4):996-1006. PubMed ID: 8445659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and designing of the S3 site of aqualysin I, a thermophilic subtilisin-related serine protease.
    Tanaka T; Matsuzawa H; Ohta T
    J Biochem; 1999 Jun; 125(6):1016-21. PubMed ID: 10348901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free energy calculations on binding and catalysis by alpha-lytic protease: the role of substrate size in the P1 pocket.
    Caldwell JW; Agard DA; Kollman PA
    Proteins; 1991; 10(2):140-8. PubMed ID: 1896427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided evolution of enzymes with new substrate specificities.
    el Hawrani AS; Sessions RB; Moreton KM; Holbrook JJ
    J Mol Biol; 1996 Nov; 264(1):97-110. PubMed ID: 8950270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of S2 site of aqualysin I; alteration of P2 specificity by excluding P2 side chain.
    Tanaka T; Matsuzawa H; Ohta T
    Biochemistry; 1998 Dec; 37(50):17402-7. PubMed ID: 9860855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the broad substrate specificity of fiddler crab collagenolytic serine protease 1.
    Tsu CA; Perona JJ; Fletterick RJ; Craik CS
    Biochemistry; 1997 May; 36(18):5393-401. PubMed ID: 9154921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site of alpha-lytic protease: enzyme-substrate interactions.
    Bauer CA; Brayer GD; Sielecki AR; James MN
    Eur J Biochem; 1981 Nov; 120(2):289-94. PubMed ID: 7032913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities.
    Graham LD; Haggett KD; Jennings PA; Le Brocque DS; Whittaker RG; Schober PA
    Biochemistry; 1993 Jun; 32(24):6250-8. PubMed ID: 8512935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of enzyme specificity by site-directed mutagenesis.
    Hedstrom L; Graf L; Stewart CB; Rutter WJ; Phillips MA
    Methods Enzymol; 1991; 202():671-87. PubMed ID: 1784193
    [No Abstract]   [Full Text] [Related]  

  • 13. Random mutagenesis of the substrate-binding site of a serine protease. A new library of alpha-lytic protease S1 mutants.
    Graham LD; Haggett KD; Hayes PJ; Schober PA; Jennings PA; Whittaker RG
    Ann N Y Acad Sci; 1995 Mar; 750():10-4. PubMed ID: 7785837
    [No Abstract]   [Full Text] [Related]  

  • 14. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures.
    Krystek S; Stouch T; Novotny J
    J Mol Biol; 1993 Dec; 234(3):661-79. PubMed ID: 8254666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered enzymes for improved organic synthesis.
    Hult K; Berglund P
    Curr Opin Biotechnol; 2003 Aug; 14(4):395-400. PubMed ID: 12943848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new library of alpha-lytic protease S1 mutants generated by combinatorial random substitution.
    Graham LD; Haggett KD; Hayes PJ; Schober PA; Jennings PA; Whittaker RG
    Biochem Mol Biol Int; 1994 Apr; 32(5):831-9. PubMed ID: 8069232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipase A2 engineering. Deletion of the C-terminus segment changes substrate specificity and uncouples calcium and substrate binding at the zwitterionic interface.
    Huang B; Yu BZ; Rogers J; Byeon IJ; Sekar K; Chen X; Sundaralingam M; Tsai MD; Jain MK
    Biochemistry; 1996 Sep; 35(37):12164-74. PubMed ID: 8810924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the substrate specificity of Factor VII activating protease (FSAP) and design of specific and sensitive peptide substrates.
    Kara E; Manna D; Løset GÅ; Schneider EL; Craik CS; Kanse S
    Thromb Haemost; 2017 Aug; 117(9):1750-1760. PubMed ID: 28726978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational method for relative binding energies of enzyme-substrate complexes.
    Zhang T; Koshland DE
    Protein Sci; 1996 Feb; 5(2):348-56. PubMed ID: 8745413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.