These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18568830)

  • 1. Soft tissue modelling for applications in virtual surgery and surgical robotics.
    Famaey N; Vander Sloten J
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):351-66. PubMed ID: 18568830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphic and haptic modelling of the oesophagus for VR-based medical simulation.
    Choi C; Kim J; Han H; Ahn B; Kim J
    Int J Med Robot; 2009 Sep; 5(3):257-66. PubMed ID: 19444793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperelastic modelling and parametric study of soft tissue embedded lump for MIS applications.
    Sokhanvar S; Dargahi J; Packirisamy M
    Int J Med Robot; 2008 Sep; 4(3):232-41. PubMed ID: 18698669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics.
    Brown JD; Rosen J; Moreyra M; Sinanan M; Hannaford B
    Stud Health Technol Inform; 2002; 85():71-3. PubMed ID: 15458062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic and imaging in urological surgery.
    Teber D; Baumhauer M; Guven EO; Rassweiler J
    Curr Opin Urol; 2009 Jan; 19(1):108-13. PubMed ID: 19057226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rupture progression model of stress integration for virtual reality ablation.
    Kume N; Eguchi K; Kuroda T; Yoshimura K; Okubo K; Okamoto K; Takemura T; Yoshihara H
    Stud Health Technol Inform; 2013; 184():242-6. PubMed ID: 23400164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realistic soft tissue deformation strategies for real time surgery simulation.
    Shen Y; Zhou X; Zhang N; Tamma K; Sweet R
    Stud Health Technol Inform; 2008; 132():457-9. PubMed ID: 18391343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
    Lee SL; Lerotic M; Vitiello V; Giannarou S; Kwok KW; Visentini-Scarzanella M; Yang GZ
    Comput Med Imaging Graph; 2010 Jan; 34(1):33-45. PubMed ID: 19699056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cost-efficient suturing simulation with pre-computed models.
    Arikatla VS; Sankaranarayanan G; De S
    Stud Health Technol Inform; 2011; 163():31-5. PubMed ID: 21335753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation.
    Schwartz JM; Denninger M; Rancourt D; Moisan C; Laurendeau D
    Med Image Anal; 2005 Apr; 9(2):103-12. PubMed ID: 15721226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model.
    Rosen J; Brown JD; Chang L; Sinanan MN; Hannaford B
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):399-413. PubMed ID: 16532766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of Robotic Surgery Simulator (RoSS).
    Kesavadas T; Stegemann A; Sathyaseelan G; Chowriappa A; Srimathveeravalli G; Seixas-Mikelus S; Chandrasekhar R; Wilding G; Guru K
    Stud Health Technol Inform; 2011; 163():274-6. PubMed ID: 21335803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electromechanical based deformable model for soft tissue simulation.
    Zhong Y; Shirinzadeh B; Smith J; Gu C
    Artif Intell Med; 2009 Nov; 47(3):275-88. PubMed ID: 19819116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling and evaluation of surgical performance using hidden Markov models.
    Megali G; Sinigaglia S; Tonet O; Dario P
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1911-9. PubMed ID: 17019854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid deformable model for real-time surgical simulation.
    Zhu B; Gu L
    Comput Med Imaging Graph; 2012 Jul; 36(5):356-65. PubMed ID: 22483053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft tissue deformation tracking for robotic assisted minimally invasive surgery.
    Stoyanov D; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():254-7. PubMed ID: 19964473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.