These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 18568833)
1. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type. Verhulp E; Van Rietbergen B; Muller R; Huiskes R Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833 [TBL] [Abstract][Full Text] [Related]
2. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. Verhulp E; van Rietbergen B; Müller R; Huiskes R J Biomech; 2008; 41(7):1479-85. PubMed ID: 18423473 [TBL] [Abstract][Full Text] [Related]
3. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849 [TBL] [Abstract][Full Text] [Related]
4. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
5. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. Wolfram U; Wilke HJ; Zysset PK J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932 [TBL] [Abstract][Full Text] [Related]
6. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865 [TBL] [Abstract][Full Text] [Related]
7. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation. Webster D; Wirth A; van Lenthe GH; Müller R Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383 [TBL] [Abstract][Full Text] [Related]
8. Assessment of factors influencing finite element vertebral model predictions. Jones AC; Wilcox RK J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394 [TBL] [Abstract][Full Text] [Related]
9. Finite element modeling of trabecular bone damage. Kosmopoulos V; Keller TS Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432 [TBL] [Abstract][Full Text] [Related]
10. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography. Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599 [TBL] [Abstract][Full Text] [Related]
11. Stochastic finite element analysis of biological systems: comparison of a simple intervertebral disc model with experimental results. Espino DM; Meakin JR; Hukins DW; Reid JE Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):243-8. PubMed ID: 12959758 [TBL] [Abstract][Full Text] [Related]
12. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
13. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Pahr DH; Zysset PK Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122 [TBL] [Abstract][Full Text] [Related]
14. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties. Yosibash Z; Tal D; Trabelsi N Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270 [TBL] [Abstract][Full Text] [Related]
15. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Baca V; Horak Z; Mikulenka P; Dzupa V Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761 [TBL] [Abstract][Full Text] [Related]
16. Comparison of micro-level and continuum-level voxel models of the proximal femur. Verhulp E; van Rietbergen B; Huiskes R J Biomech; 2006; 39(16):2951-7. PubMed ID: 16359680 [TBL] [Abstract][Full Text] [Related]
17. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. Kelly N; McGarry JP J Mech Behav Biomed Mater; 2012 May; 9():184-97. PubMed ID: 22498295 [TBL] [Abstract][Full Text] [Related]
18. Validation of a finite element model of the human metacarpal. Barker DS; Netherway DJ; Krishnan J; Hearn TC Med Eng Phys; 2005 Mar; 27(2):103-13. PubMed ID: 15642506 [TBL] [Abstract][Full Text] [Related]
19. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. Kosmopoulos V; Schizas C; Keller TS J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887 [TBL] [Abstract][Full Text] [Related]
20. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]