These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 18569106)

  • 41. Companding to improve cochlear-implant speech recognition in speech-shaped noise.
    Bhattacharya A; Zeng FG
    J Acoust Soc Am; 2007 Aug; 122(2):1079-89. PubMed ID: 17672655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal fine structure in cochlear implants: preliminary speech perception results in Cantonese-speaking implant users.
    Schatzer R; Krenmayr A; Au DK; Kals M; Zierhofer C
    Acta Otolaryngol; 2010 Sep; 130(9):1031-9. PubMed ID: 20141488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cantonese Tone Perception for Children Who Use a Hearing Aid and a Cochlear Implant in Opposite Ears.
    Mok M; Holt CM; Lee KYS; Dowell RC; Vogel AP
    Ear Hear; 2017; 38(6):e359-e368. PubMed ID: 28678079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a temporal fundamental frequency coding strategy for cochlear implants.
    Vandali AE; van Hoesel RJ
    J Acoust Soc Am; 2011 Jun; 129(6):4023-36. PubMed ID: 21682423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cantonese tone recognition with enhanced temporal periodicity cues.
    Yuan M; Lee T; Yuen KC; Soli SD; van Hasselt CA; Tong MC
    J Acoust Soc Am; 2009 Jul; 126(1):327-37. PubMed ID: 19603889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of a new spectral peak coding strategy for the Nucleus 22 Channel Cochlear Implant System.
    Skinner MW; Clark GM; Whitford LA; Seligman PM; Staller SJ; Shipp DB; Shallop JK; Everingham C; Menapace CM; Arndt PL
    Am J Otol; 1994 Nov; 15 Suppl 2():15-27. PubMed ID: 8572106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phonological mismatch makes aided speech recognition in noise cognitively taxing.
    Rudner M; Foo C; Rönnberg J; Lunner T
    Ear Hear; 2007 Dec; 28(6):879-92. PubMed ID: 17982373
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Digital signal processing (DSP) applications for multiband loudness correction digital hearing aids and cochlear implants.
    Dillier N; Frölich T; Kompis M; Bögli H; Lai WK
    J Rehabil Res Dev; 1993; 30(1):95-109. PubMed ID: 8263833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cochlear implants with fine structure processing improve speech and tone perception in Mandarin-speaking adults.
    Chen X; Liu B; Liu S; Mo L; Li Y; Kong Y; Zheng J; Li Y; Gong S; Han D
    Acta Otolaryngol; 2013 Jul; 133(7):733-8. PubMed ID: 23768059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectral and temporal cues for phoneme recognition in noise.
    Xu L; Zheng Y
    J Acoust Soc Am; 2007 Sep; 122(3):1758. PubMed ID: 17927435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Speech discrimination via cochlear implants with two different digital speech processing strategies: preliminary results for 7 patients.
    Dillier N; Bögli H; Spillmann T
    Scand Audiol Suppl; 1993; 38():145-53. PubMed ID: 8153560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies.
    van Hoesel R; Böhm M; Pesch J; Vandali A; Battmer RD; Lenarz T
    J Acoust Soc Am; 2008 Apr; 123(4):2249-63. PubMed ID: 18397030
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of programming threshold and maplaw settings on acoustic thresholds and speech discrimination with the MED-EL COMBI 40+ cochlear implant.
    Boyd PJ
    Ear Hear; 2006 Dec; 27(6):608-18. PubMed ID: 17086073
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nucleus 24 advanced encoder conversion study: performance versus preference.
    Skinner MW; Arndt PL; Staller SJ
    Ear Hear; 2002 Feb; 23(1 Suppl):2S-17S. PubMed ID: 11883765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intelligibility of speech in noise at high presentation levels: effects of hearing loss and frequency region.
    Summers V; Cord MT
    J Acoust Soc Am; 2007 Aug; 122(2):1130-7. PubMed ID: 17672659
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nucleus 22-channel cochlear mini-system implantations in Mandarin-speaking patients.
    Huang TS; Wang NM; Liu SY
    Am J Otol; 1996 Jan; 17(1):46-52. PubMed ID: 8694134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Speech discrimination with bilateral cochlear implants in noisy conditions].
    Au KK; Jin H; Hui Y; Wei L
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Dec; 36(6):433-5. PubMed ID: 12761958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies.
    Vandali AE; Sucher C; Tsang DJ; McKay CM; Chew JW; McDermott HJ
    J Acoust Soc Am; 2005 May; 117(5):3126-38. PubMed ID: 15957780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tone perception of Mandarin-speaking postlingually deaf implantees using the Nucleus 22-Channel Cochlear Mini System.
    Huang TS; Wang NM; Liu SY
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():294-8. PubMed ID: 7668677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cochlear implant-mediated perception of music.
    Limb CJ
    Curr Opin Otolaryngol Head Neck Surg; 2006 Oct; 14(5):337-40. PubMed ID: 16974148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.