These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1856911)

  • 1. Effect of floor conditions upon frictional characteristics of squash court shoes.
    Chapman AE; Leyland AJ; Ross SM; Ryall M
    J Sports Sci; 1991; 9(1):33-41. PubMed ID: 1856911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on traction of outsole composition and hardnesses of basketball shoes and three types of playing surfaces.
    Rheinstein DJ; Morehouse CA; Niebel BW
    Med Sci Sports; 1978; 10(4):282-8. PubMed ID: 750848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions.
    Chang WR; Grönqvist R; Leclercq S; Myung R; Makkonen L; Strandberg L; Brungraber RJ; Mattke U; Thorpe SC
    Ergonomics; 2001 Oct; 44(13):1217-32. PubMed ID: 11794765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Available friction of ladder shoes and slip potential for climbing on a straight ladder.
    Chang WR; Chang CC; Matz S
    Ergonomics; 2005 Jul; 48(9):1169-82. PubMed ID: 16251154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.
    Kim IJ; Hsiao H; Simeonov P
    Appl Ergon; 2013 Jan; 44(1):58-64. PubMed ID: 22641153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants.
    Li KW; Chen CJ
    Appl Ergon; 2004 Nov; 35(6):499-507. PubMed ID: 15374757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants.
    Li KW; Wu HH; Lin YC
    Appl Ergon; 2006 Nov; 37(6):743-8. PubMed ID: 16427022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frictional forces required for unrestrained locomotion in dairy cattle.
    van der Tol PP; Metz JH; Noordhuizen-Stassen EN; Back W; Braam CR; Weijs WA
    J Dairy Sci; 2005 Feb; 88(2):615-24. PubMed ID: 15653528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The validity and reliability of a portable slip meter for determining floor slipperiness during simulated heel strike.
    Grönqvist R; Hirvonen M; Rajamäki E; Matz S
    Accid Anal Prev; 2003 Mar; 35(2):211-25. PubMed ID: 12504142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floor/shoe slip resistance measurement.
    Chaffin DB; Woldstad JC; Trujillo A
    Am Ind Hyg Assoc J; 1992 May; 53(5):283-9. PubMed ID: 1609738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of slip resistance under footwear materials, tread designs, floor contamination, and floor inclination conditions.
    Li KW; Chen CY; Chen CC; Liu L
    Work; 2012; 41 Suppl 1():3349-51. PubMed ID: 22317227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A prospective study of floor surface, shoes, floor cleaning and slipping in US limited-service restaurant workers.
    Verma SK; Chang WR; Courtney TK; Lombardi DA; Huang YH; Brennan MJ; Mittleman MA; Ware JH; Perry MJ
    Occup Environ Med; 2011 Apr; 68(4):279-85. PubMed ID: 20935283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive multiscale computational model of shoe-floor coefficient of friction.
    Moghaddam SRM; Acharya A; Redfern MS; Beschorner KE
    J Biomech; 2018 Jan; 66():145-152. PubMed ID: 29183657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people.
    Menant JC; Steele JR; Menz HB; Munro BJ; Lord SR
    Gait Posture; 2009 Apr; 29(3):392-7. PubMed ID: 19041245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface.
    Fong DT; Mao DW; Li JX; Hong Y
    J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of a heel-mounted accelerometer as an adjunct measure of slip distance.
    McGorry RW; DiDomenico A; Chang CC
    Appl Ergon; 2007 May; 38(3):369-76. PubMed ID: 16806040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of different flooring systems on weight and pressure distribution on claws of dairy cows.
    Telezhenko E; Bergsten C; Magnusson M; Ventorp M; Nilsson C
    J Dairy Sci; 2008 May; 91(5):1874-84. PubMed ID: 18420618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perceived floor slipperiness and floor roughness in a gait experiment.
    Yu R; Li KW
    Work; 2015; 50(4):649-57. PubMed ID: 24448018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slipping of the foot on the floor when pulling a pallet truck.
    Li KW; Chang CC; Chang WR
    Appl Ergon; 2008 Nov; 39(6):812-9. PubMed ID: 18222414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepping over obstacles of different heights and varied shoe traction alter the kinetic strategies of the leading limb.
    Houser JJ; Decker L; Stergiou N
    Ergonomics; 2008 Dec; 51(12):1847-59. PubMed ID: 18608479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.