BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18569291)

  • 1. Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay.
    Pazos M; Gouveia S; Sanroman MA; Cameselle C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):823-31. PubMed ID: 18569291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of organic pollutants and heavy metals in soils by electrokinetic remediation.
    Ricart MT; Pazos M; Gouveia S; Cameselle C; Sanroman MA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):871-5. PubMed ID: 18569297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic removal of Cu and Zn in anaerobic digestate: interrelation between metal speciation and electrokinetic treatments.
    Zhu NM; Chen M; Guo XJ; Hu GQ; Yu-Deng
    J Hazard Mater; 2015 Apr; 286():118-26. PubMed ID: 25562809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique.
    Pazos M; Sanromán MA; Cameselle C
    Chemosphere; 2006 Feb; 62(5):817-22. PubMed ID: 15970309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.
    Figueroa A; Cameselle C; Gouveia S; Hansen HK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(9):691-700. PubMed ID: 27127923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.
    Sarkar B; Naidu R; Krishnamurti GS; Megharaj M
    Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of heavy metals from contaminated soil by electrodialytic remediation enhanced with organic acids.
    Merdoud O; Cameselle C; Boulakradeche MO; Akretche DE
    Environ Sci Process Impacts; 2016 Nov; 18(11):1440-1448. PubMed ID: 27740659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of DDL processes during electrolytic reduction of Cu(II) in a low oxygen environment.
    Brosky RT; Pamukcu S
    J Hazard Mater; 2013 Nov; 262():878-82. PubMed ID: 24145069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical effects on uncontaminated kaolinite due to electrokinetic treatment using inert electrodes.
    Liaki C; Rogers CD; Boardman DI
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):810-22. PubMed ID: 18569290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of multiple-metals from contaminated clay minerals.
    Li LY
    Environ Technol; 2006 Jul; 27(7):811-22. PubMed ID: 16894825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and Optimization of Mn Removal from Contaminated Solid Matrixes by Electrokinetic Remediation.
    Cameselle C; Gouveia S; Cabo A
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32168914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.
    Pérez-Esteban J; Escolástico C; Moliner A; Masaguer A
    Chemosphere; 2013 Jan; 90(2):276-83. PubMed ID: 22854018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.
    Pavlović J; Stopić S; Friedrich B; Kamberović Z
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):518-22. PubMed ID: 18062485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH.
    Zhou DM; Deng CF; Cang L; Alshawabkeh AN
    Chemosphere; 2005 Oct; 61(4):519-27. PubMed ID: 16202805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption characteristics of kaolin clay contaminated with zinc from electrokinetic soil processing.
    Lee MH; Kamon M; Kim SS; Lee JY; Chung HI
    Environ Geochem Health; 2007 Aug; 29(4):281-8. PubMed ID: 17530420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology.
    Wang JY; Huang XJ; Kao JC; Stabnikova O
    J Hazard Mater; 2006 Aug; 136(3):532-41. PubMed ID: 16504386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil.
    Ottosen LM; Lepkova K; Kubal M
    J Hazard Mater; 2006 Sep; 137(1):113-20. PubMed ID: 16533561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.
    Aboughalma H; Bi R; Schlaak M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):926-33. PubMed ID: 18569305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.