BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 18569562)

  • 21. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of low-intensity physical activity by triaxial accelerometry.
    Midorikawa T; Tanaka S; Kaneko K; Koizumi K; Ishikawa-Takata K; Futami J; Tabata I
    Obesity (Silver Spring); 2007 Dec; 15(12):3031-8. PubMed ID: 18198312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children.
    Rodriguez G; Béghin L; Michaud L; Moreno LA; Turck D; Gottrand F
    Br J Nutr; 2002 Jun; 87(6):623-31. PubMed ID: 12067433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Triaxial accelerometry for assessment of physical activity in young children.
    Tanaka C; Tanaka S; Kawahara J; Midorikawa T
    Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic rate and accelerometer output during walking in people with Down syndrome.
    Agiovlasitis S; Motl RW; Fahs CA; Ranadive SM; Yan H; Echols GH; Rossow L; Fernhall B
    Med Sci Sports Exerc; 2011 Jul; 43(7):1322-7. PubMed ID: 21200346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of the RT3 in the measurement of physical activity in children.
    Hussey J; Bennett K; Dwyer JO; Langford S; Bell C; Gormley J
    J Sci Med Sport; 2009 Jan; 12(1):130-3. PubMed ID: 18069065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can accelerometry accurately predict the energy cost of uphill/downhill walking?
    Terrier P; Aminian K; Schutz Y
    Ergonomics; 2001 Jan; 44(1):48-62. PubMed ID: 11214898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validity of the Nike+ device during walking and running.
    Kane NA; Simmons MC; John D; Thompson DL; Bassett DR
    Int J Sports Med; 2010 Feb; 31(2):101-5. PubMed ID: 20027538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating activity-related energy expenditure under sedentary conditions using a tri-axial seismic accelerometer.
    van Hees VT; van Lummel RC; Westerterp KR
    Obesity (Silver Spring); 2009 Jun; 17(6):1287-92. PubMed ID: 19282829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.
    Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C
    J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acceleration versus heart rate for estimating energy expenditure and speed during locomotion in animals: tests with an easy model species, Homo sapiens.
    Halsey LG; Shepard EL; Hulston CJ; Venables MC; White CR; Jeukendrup AE; Wilson RP
    Zoology (Jena); 2008; 111(3):231-41. PubMed ID: 18375107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic rate monitoring and energy expenditure prediction using a novel actigraphy method.
    Moran DS; Heled Y; Gonzalez RR
    Med Sci Monit; 2004 Nov; 10(11):MT117-20. PubMed ID: 15507861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new 2-regression model for the Actical accelerometer.
    Crouter SE; Bassett DR
    Br J Sports Med; 2008 Mar; 42(3):217-24. PubMed ID: 17761786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Within- and between-day stability of treadmill walking VO2 in children with hemiplegic cerebral palsy, stability of walking VO2 in children with CP.
    Keefer DJ; Tseh W; Caputo JL; Apperson K; McGreal S; Morgan DW
    Gait Posture; 2005 Jan; 21(1):80-4. PubMed ID: 15536037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of energy expenditure from heart rate monitoring during submaximal exercise.
    Keytel LR; Goedecke JH; Noakes TD; Hiiloskorpi H; Laukkanen R; van der Merwe L; Lambert EV
    J Sports Sci; 2005 Mar; 23(3):289-97. PubMed ID: 15966347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Caloric cost of walking and running.
    Fellingham GW; Roundy ES; Fisher AG; Bryce GR
    Med Sci Sports; 1978; 10(2):132-6. PubMed ID: 692303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A validation of a physical activity monitor for young and older adults.
    Nichols JF; Patterson P; Early T
    Can J Sport Sci; 1992 Dec; 17(4):299-303. PubMed ID: 1330268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The energy cost of horizontal walking and running in adolescents.
    Walker JL; Murray TD; Jackson AS; Morrow JR; Michaud TJ
    Med Sci Sports Exerc; 1999 Feb; 31(2):311-22. PubMed ID: 10063822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.
    Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM
    Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.