These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
544 related articles for article (PubMed ID: 18569789)
1. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine. Chen EC; Wiley JR; Chen ES Nucleosides Nucleotides Nucleic Acids; 2008 May; 27(5):506-24. PubMed ID: 18569789 [TBL] [Abstract][Full Text] [Related]
2. The electron affinities of the radicals formed by the loss of an aromatic hydrogen atom from adenine, guanine, cytosine, uracil, and thymine. Chen ES; Chen EC; Sane N Biochem Biophys Res Commun; 1998 May; 246(1):228-30. PubMed ID: 9600097 [TBL] [Abstract][Full Text] [Related]
3. Anion photoelectron imaging of deprotonated thymine and cytosine. Parsons BF; Sheehan SM; Yen TA; Neumark DM; Wehres N; Weinkauf R Phys Chem Chem Phys; 2007 Jul; 9(25):3291-7. PubMed ID: 17579738 [TBL] [Abstract][Full Text] [Related]
4. Gas-phase thermochemical properties of pyrimidine nucleobases. Liu M; Li T; Amegayibor FS; Cardoso DS; Fu Y; Lee JK J Org Chem; 2008 Dec; 73(23):9283-91. PubMed ID: 18973382 [TBL] [Abstract][Full Text] [Related]
5. Na+, Mg2+, and Zn2+ binding to all tautomers of adenine, cytosine, and thymine and the eight most stable keto/enol tautomers of guanine: a correlated ab initio quantum chemical study. Kabelác M; Hobza P J Phys Chem B; 2006 Jul; 110(29):14515-23. PubMed ID: 16854164 [TBL] [Abstract][Full Text] [Related]
6. The determination of absolute electron affinities of the purines and pyrimidines in DNA and RNA from reversible reduction potentials. Wiley JR; Robinson JM; Ehdaie S; Chen EC; Chen ES; Wentworth WE Biochem Biophys Res Commun; 1991 Oct; 180(2):841-5. PubMed ID: 1719971 [TBL] [Abstract][Full Text] [Related]
7. Investigation of proton transport tautomerism in clusters of protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia by high-pressure mass spectrometry and ab initio calculations. Wu R; McMahon TB J Am Chem Soc; 2007 Jan; 129(3):569-80. PubMed ID: 17227020 [TBL] [Abstract][Full Text] [Related]
8. High-resolution photoelectron spectra of the pyrimidine-type nucleobases. Fulfer KD; Hardy D; Aguilar AA; Poliakoff ED J Chem Phys; 2015 Jun; 142(22):224310. PubMed ID: 26071713 [TBL] [Abstract][Full Text] [Related]
9. Electronic structure and spectroscopy of nucleic acid bases: ionization energies, ionization-induced structural changes, and photoelectron spectra. Bravaya KB; Kostko O; Dolgikh S; Landau A; Ahmed M; Krylov AI J Phys Chem A; 2010 Nov; 114(46):12305-17. PubMed ID: 21038927 [TBL] [Abstract][Full Text] [Related]
10. Theoretical investigation of the proton transfer mechanism in guanine-cytosine and adenine-thymine base pairs. Xiao S; Wang L; Liu Y; Lin X; Liang H J Chem Phys; 2012 Nov; 137(19):195101. PubMed ID: 23181336 [TBL] [Abstract][Full Text] [Related]
11. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. Jurecka P; Hobza P J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608 [TBL] [Abstract][Full Text] [Related]
12. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine, and Adenine. Sen A; Hou GL; Wang XB; Dessent CE J Phys Chem B; 2015 Sep; 119(35):11626-31. PubMed ID: 26244841 [TBL] [Abstract][Full Text] [Related]
13. Structures and energetics of the deprotonated adenine-uracil base pair, including proton-transferred systems. Kim S; Lind MC; Schaefer HF J Phys Chem B; 2008 Mar; 112(11):3545-51. PubMed ID: 18303886 [TBL] [Abstract][Full Text] [Related]
14. Tuning the gas phase redox properties of copper(II) ternary complexes of terpyridines to control the formation of nucleobase radical cations. Lam AK; Abrahams BF; Grannas MJ; McFadyen WD; O'Hair RA Dalton Trans; 2006 Nov; (42):5051-61. PubMed ID: 17060991 [TBL] [Abstract][Full Text] [Related]
15. Photodamage to isolated mononucleotides--photodissociation spectra and fragment channels. Marcum JC; Halevi A; Weber JM Phys Chem Chem Phys; 2009 Mar; 11(11):1740-51. PubMed ID: 19290345 [TBL] [Abstract][Full Text] [Related]
16. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV). Francés-Monerris A; Segarra-Martí J; Merchán M; Roca-Sanjuán D J Chem Phys; 2015 Dec; 143(21):215101. PubMed ID: 26646889 [TBL] [Abstract][Full Text] [Related]
17. Gas-phase thermochemical properties of the damaged base O(6)-methylguanine versus adenine and guanine. Zhachkina A; Liu M; Sun X; Amegayibor FS; Lee JK J Org Chem; 2009 Oct; 74(19):7429-40. PubMed ID: 19731957 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of DNA/RNA nucleobases on hexagonal boron nitride sheet: an ab initio study. Lin Q; Zou X; Zhou G; Liu R; Wu J; Li J; Duan W Phys Chem Chem Phys; 2011 Jul; 13(26):12225-30. PubMed ID: 21637870 [TBL] [Abstract][Full Text] [Related]