BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 18570371)

  • 1. Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores.
    Barillari C; Marcou G; Rognan D
    J Chem Inf Model; 2008 Jul; 48(7):1396-410. PubMed ID: 18570371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application.
    Baroni M; Cruciani G; Sciabola S; Perruccio F; Mason JS
    J Chem Inf Model; 2007; 47(2):279-94. PubMed ID: 17381166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems.
    Kellenberger E; Foata N; Rognan D
    J Chem Inf Model; 2008 May; 48(5):1014-25. PubMed ID: 18412328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-derived three-dimensional pharmacophore models for G-protein-coupled receptors and their application in virtual screening.
    Klabunde T; Giegerich C; Evers A
    J Med Chem; 2009 May; 52(9):2923-32. PubMed ID: 19374402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPCR structure-based virtual screening approach for CB2 antagonist search.
    Chen JZ; Wang J; Xie XQ
    J Chem Inf Model; 2007; 47(4):1626-37. PubMed ID: 17580929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.
    Zhang Q; Muegge I
    J Med Chem; 2006 Mar; 49(5):1536-48. PubMed ID: 16509572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel method for generating structure-based pharmacophores using energetic analysis.
    Salam NK; Nuti R; Sherman W
    J Chem Inf Model; 2009 Oct; 49(10):2356-68. PubMed ID: 19761201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.
    Wolber G; Langer T
    J Chem Inf Model; 2005; 45(1):160-9. PubMed ID: 15667141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple-ligand-based virtual screening: methods and applications of the MTree approach.
    Hessler G; Zimmermann M; Matter H; Evers A; Naumann T; Lengauer T; Rarey M
    J Med Chem; 2005 Oct; 48(21):6575-84. PubMed ID: 16220974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ph4Dock: pharmacophore-based protein-ligand docking.
    Goto J; Kataoka R; Hirayama N
    J Med Chem; 2004 Dec; 47(27):6804-11. PubMed ID: 15615529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models.
    Boppana K; Dubey PK; Jagarlapudi SA; Vadivelan S; Rambabu G
    Eur J Med Chem; 2009 Sep; 44(9):3584-90. PubMed ID: 19321235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing false positives in kinase virtual screens.
    Perola E
    Proteins; 2006 Aug; 64(2):422-35. PubMed ID: 16708364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snooker: a structure-based pharmacophore generation tool applied to class A GPCRs.
    Sanders MP; Verhoeven S; de Graaf C; Roumen L; Vroling B; Nabuurs SB; de Vlieg J; Klomp JP
    J Chem Inf Model; 2011 Sep; 51(9):2277-92. PubMed ID: 21866955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening.
    Sato T; Honma T; Yokoyama S
    J Chem Inf Model; 2010 Jan; 50(1):170-85. PubMed ID: 20038188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting multiple ligand binding modes using self-consistent pharmacophore hypotheses.
    Wallach I; Lilien R
    J Chem Inf Model; 2009 Sep; 49(9):2116-28. PubMed ID: 19711952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual screening against Mycobacterium tuberculosis dihydrofolate reductase: suggested workflow for compound prioritization using structure interaction fingerprints.
    Kumar A; Siddiqi MI
    J Mol Graph Model; 2008 Nov; 27(4):476-88. PubMed ID: 18829358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Managing protein flexibility in docking and its applications.
    B-Rao C; Subramanian J; Sharma SD
    Drug Discov Today; 2009 Apr; 14(7-8):394-400. PubMed ID: 19185058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.