These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18570438)

  • 21. Detection and time course of formation of major thiamin diphosphate-bound covalent intermediates derived from a chromophoric substrate analogue on benzoylformate decarboxylase.
    Chakraborty S; Nemeria NS; Balakrishnan A; Brandt GS; Kneen MM; Yep A; McLeish MJ; Kenyon GL; Petsko GA; Ringe D; Jordan F
    Biochemistry; 2009 Feb; 48(5):981-94. PubMed ID: 19140682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Snapshot of a key intermediate in enzymatic thiamin catalysis: crystal structure of the alpha-carbanion of (alpha,beta-dihydroxyethyl)-thiamin diphosphate in the active site of transketolase from Saccharomyces cerevisiae.
    Fiedler E; Thorell S; Sandalova T; Golbik R; König S; Schneider G
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):591-5. PubMed ID: 11773632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carboligation reactions with benzaldehyde lyase immobilized on superparamagnetic solid support.
    Sopaci SB; Simşek I; Tural B; Volkan M; Demir AS
    Org Biomol Chem; 2009 Apr; 7(8):1658-64. PubMed ID: 19343254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical peculiarities of benzaldehyde lyase from Pseudomonas fluorescens Biovar I in the dependency on pH and cosolvent concentration.
    Schmidt T; Zavrel M; Spiess A; Ansorge-Schumacher MB
    Bioorg Chem; 2009 Jun; 37(3):84-9. PubMed ID: 19364619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis.
    Dreveny I; Kratky C; Gruber K
    Protein Sci; 2002 Feb; 11(2):292-300. PubMed ID: 11790839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient and Selective Carboligation with Whole-Cell Biocatalysts in Pickering Emulsion.
    Röllig R; Plikat C; Ansorge-Schumacher MB
    Angew Chem Int Ed Engl; 2019 Sep; 58(37):12960-12963. PubMed ID: 31218804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.
    Meshalkina L; Nilsson U; Wikner C; Kostikowa T; Schneider G
    Eur J Biochem; 1997 Mar; 244(2):646-52. PubMed ID: 9119035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis.
    Müller M; Gocke D; Pohl M
    FEBS J; 2009 Jun; 276(11):2894-904. PubMed ID: 19490096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of Bifidobacterium Longum phosphoketolase; key enzyme for glucose metabolism in Bifidobacterium.
    Takahashi K; Tagami U; Shimba N; Kashiwagi T; Ishikawa K; Suzuki E
    FEBS Lett; 2010 Sep; 584(18):3855-61. PubMed ID: 20674574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.
    Beigi M; Gauchenova E; Walter L; Waltzer S; Bonina F; Stillger T; Rother D; Pohl M; Müller M
    Chemistry; 2016 Sep; 22(39):13999-14005. PubMed ID: 27515897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase.
    Polovnikova ES; McLeish MJ; Sergienko EA; Burgner JT; Anderson NL; Bera AK; Jordan F; Kenyon GL; Hasson MS
    Biochemistry; 2003 Feb; 42(7):1820-30. PubMed ID: 12590569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate.
    Berthold CL; Moussatche P; Richards NG; Lindqvist Y
    J Biol Chem; 2005 Dec; 280(50):41645-54. PubMed ID: 16216870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling-Assisted Design of Thermostable Benzaldehyde Lyases from Rhodococcus erythropolis for Continuous Production of α-Hydroxy Ketones.
    Peng M; Siebert DL; Engqvist MKM; Niemeyer CM; Rabe KS
    Chembiochem; 2022 Apr; 23(7):e202100468. PubMed ID: 34558792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The 1',4'-iminopyrimidine tautomer of thiamin diphosphate is poised for catalysis in asymmetric active centers on enzymes.
    Nemeria N; Chakraborty S; Baykal A; Korotchkina LG; Patel MS; Jordan F
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):78-82. PubMed ID: 17182735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An activity, stability and selectivity comparison of propioin synthesis by thiamine diphosphate-dependent enzymes in a solid/gas bioreactor.
    Mikolajek R; Spiess AC; Pohl M; Lamare S; Büchs J
    Chembiochem; 2007 Jun; 8(9):1063-70. PubMed ID: 17497614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4'-aminopyrimidinium and 1',4'-iminopyrimidine tautomeric forms in the absence of the conserved glutamate.
    Nemeria N; Binshtein E; Patel H; Balakrishnan A; Vered I; Shaanan B; Barak Z; Chipman D; Jordan F
    Biochemistry; 2012 Oct; 51(40):7940-52. PubMed ID: 22970650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple modes of active center communication in thiamin diphosphate-dependent enzymes.
    Jordan F; Nemeria NS; Sergienko E
    Acc Chem Res; 2005 Sep; 38(9):755-63. PubMed ID: 16171318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defining critical residues for substrate binding to 1-deoxy-D-xylulose 5-phosphate synthase--active site substitutions stabilize the predecarboxylation intermediate C2α-lactylthiamin diphosphate.
    Basta LAB; Patel H; Kakalis L; Jordan F; Meyers CLF
    FEBS J; 2014 Jun; 281(12):2820-2837. PubMed ID: 24767541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase.
    Chen X; Wang Z; Lou Y; Peng Y; Zhu Q; Xu J; Wu Q
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9326-9329. PubMed ID: 33559383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.