BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18570453)

  • 1. Comparative proteomic studies in Rhodospirillum rubrum grown under different nitrogen conditions.
    Selao TT; Nordlund S; Norén A
    J Proteome Res; 2008 Aug; 7(8):3267-75. PubMed ID: 18570453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome.
    Teixeira PF; Selao TT; Henriksson V; Wang H; Norén A; Nordlund S
    Res Microbiol; 2010 Oct; 161(8):651-9. PubMed ID: 20600859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Roberts GP
    J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of chromatophore membrane protein complexes formed under different nitrogen availability conditions in Rhodospirillum rubrum.
    Selao TT; Branca R; Chae PS; Lehtiö J; Gellman SH; Rasmussen SG; Nordlund S; Norén A
    J Proteome Res; 2011 Jun; 10(6):2703-14. PubMed ID: 21443180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derepression of nitrogenase by addition of malate to cultures of Rhodospirillum rubrum grown with glutamate as the carbon and nitrogen source.
    Hoover TR; Ludden PW
    J Bacteriol; 1984 Jul; 159(1):400-3. PubMed ID: 6145702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum.
    North JA; Sriram J; Chourey K; Ecker CD; Sharma R; Wildenthal JA; Hettich RL; Tabita FR
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustaining N2-dependent growth in the presence of CO.
    Kerby RL; Roberts GP
    J Bacteriol; 2011 Feb; 193(3):774-7. PubMed ID: 21115659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, L-glutamine and L-asparagine.
    Neilson AH; Nordlund S
    J Gen Microbiol; 1975 Nov; 91(1):53-62. PubMed ID: 811763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a
    McCully AL; Onyeziri MC; LaSarre B; Gliessman JR; McKinlay JB
    Microbiology (Reading); 2020 Feb; 166(2):199-211. PubMed ID: 31774392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness.
    Selao TT; Edgren T; Wang H; Norén A; Nordlund S
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1834-1840. PubMed ID: 21393366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and partial characterization of a pyruvate oxidoreductase from the photosynthetic bacterium Rhodospirillum rubrum grown under nitrogen-fixing conditions.
    Brostedt E; Nordlund S
    Biochem J; 1991 Oct; 279 ( Pt 1)(Pt 1):155-8. PubMed ID: 1930134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids.
    Rudolf C; Grammel H
    Enzyme Microb Technol; 2012 Apr; 50(4-5):238-46. PubMed ID: 22418264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters.
    Brandl H; Knee EJ; Fuller RC; Gross RA; Lenz RW
    Int J Biol Macromol; 1989 Feb; 11(1):49-55. PubMed ID: 2518731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel substrate (algal protein) for cultivation of Rhodospirillum rubrum.
    Vatsala TM; Rekha R; Srividhya R
    Indian J Exp Biol; 2011 Oct; 49(10):773-80. PubMed ID: 22013744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon monoxide-dependent growth of Rhodospirillum rubrum.
    Kerby RL; Ludden PW; Roberts GP
    J Bacteriol; 1995 Apr; 177(8):2241-4. PubMed ID: 7721719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of sulfur-nitrogen-carbon removal by Pseudomonas sp. C27 under micro-aeration condition.
    Guo H; Chen C; Lee DJ; Wang A; Ren N
    Enzyme Microb Technol; 2014 Mar; 56():20-7. PubMed ID: 24564898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by alpha-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro.
    Jonsson A; Teixeira PF; Nordlund S
    FEBS J; 2007 May; 274(10):2449-60. PubMed ID: 17419734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound.
    Lery LM; von Krüger WM; Viana FC; Teixeira KR; Bisch PM
    Biochim Biophys Acta; 2008 Nov; 1784(11):1578-89. PubMed ID: 18662807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of nitrogen-containing compounds on hydrogen light emission and nitrogen fixation by purple bacteria].
    Kondrat'eva EN; Gogotov IN; Gruzinskiĭ IV
    Mikrobiologiia; 1979; 48(3):389-95. PubMed ID: 112358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum.
    Grammel H; Gilles ED; Ghosh R
    Appl Environ Microbiol; 2003 Nov; 69(11):6577-86. PubMed ID: 14602616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.