These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18570508)

  • 1. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.
    Marashdeh A; Frankcombe TJ
    J Chem Phys; 2008 Jun; 128(23):234505. PubMed ID: 18570508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of MgH2 in hydrogen storage reactions of the 6LiBH4-CaH2 reactive hydride composite.
    Zhou Y; Liu Y; Zhang Y; Gao M; Pan H
    Dalton Trans; 2012 Aug; 41(36):10980-7. PubMed ID: 22842399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.
    Alapati SV; Johnson JK; Sholl DS
    J Phys Chem B; 2006 May; 110(17):8769-76. PubMed ID: 16640434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydrogenation reaction for Na-O-H system: a first-principles study.
    Zhang XB; Shi SQ; Ke XZ; Han S; Shioyama H; Kuriyama N; Kobayashi T; Xu Q
    Chemphyschem; 2007 Sep; 8(13):1979-87. PubMed ID: 17705149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.
    Alapati SV; Karl Johnson J; Sholl DS
    Phys Chem Chem Phys; 2007 Mar; 9(12):1438-52. PubMed ID: 17356751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational properties of CaAlH5 and α-AlH3 with different AlH6 networks studied by inelastic neutron scattering.
    Sato T; Ramirez-Cuesta AJ; Ikeda K; Orimo S; Yamada K
    Inorg Chem; 2011 Sep; 50(17):8007-11. PubMed ID: 21790131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First crystal structure studies of CaAlH5.
    Weidenthaler C; Frankcombe TJ; Felderhoff M
    Inorg Chem; 2006 May; 45(10):3849-51. PubMed ID: 16676940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon, IR, and Raman spectra, NMR parameters, and elastic constant calculations for AlH3 polymorphs.
    Vajeeston P; Ravindran P; Fjellvåg H
    J Phys Chem A; 2011 Oct; 115(39):10708-19. PubMed ID: 21870834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of novel hydrogen storage materials: an atomic scale computational approach.
    Wolverton C; Siegel DJ; Akbarzadeh AR; Ozoliņš V
    J Phys Condens Matter; 2008 Feb; 20(6):064228. PubMed ID: 21693890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition-Dependent Reaction Pathways and Hydrogen Storage Properties of LiBH₄/Mg(AlH₄)₂ Composites.
    Pang Y; Liu Y; Zhang X; Li Q; Gao M; Pan H
    Chem Asian J; 2015 Nov; 10(11):2452-9. PubMed ID: 26177738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system.
    Li B; Liu Y; Gu J; Gao M; Pan H
    Chem Asian J; 2013 Feb; 8(2):374-84. PubMed ID: 23169699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure prediction of LiBeH3 using ab initio total-energy calculations and evolutionary simulations.
    Hu CH; Oganov AR; Wang YM; Zhou HY; Lyakhov A; Hafner J
    J Chem Phys; 2008 Dec; 129(23):234105. PubMed ID: 19102524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pre-covered oxygen on the dehydrogenation reactions over copper surface: a density functional theory study.
    Tao SX; Wang GC; Bu XH
    J Phys Chem B; 2006 Dec; 110(51):26045-54. PubMed ID: 17181256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.
    Weidenthaler C; Pommerin A; Felderhoff M; Sun W; Wolverton C; Bogdanović B; Schüth F
    J Am Chem Soc; 2009 Nov; 131(46):16735-43. PubMed ID: 19886669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100).
    Govender A; Ferré DC; Niemantsverdriet JW
    Chemphyschem; 2012 Apr; 13(6):1591-6. PubMed ID: 22419545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers.
    Parkin G
    Acc Chem Res; 2009 Feb; 42(2):315-25. PubMed ID: 19133745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A first principles study of the thermal stability of A(m)(MH(4))(n) light complex hydrides.
    Wang YL; Liu S; Rong LJ; Wang YM
    J Phys Condens Matter; 2010 May; 22(17):175502. PubMed ID: 21393669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition state for the gas-phase reaction of uranium hexafluoride with water.
    Garrison SL; Becnel JM
    J Phys Chem A; 2008 Jun; 112(24):5453-7. PubMed ID: 18500792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A first-principles study of the electronic structure and stability of a lithium aluminum hydride for hydrogen storage.
    Song Y; Singh R; Guo ZX
    J Phys Chem B; 2006 Apr; 110(13):6906-10. PubMed ID: 16571001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.