BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 18571086)

  • 1. Transmittance characteristics of ultraviolet and blue-light-filtering intraocular lenses.
    Brockmann C; Schulz M; Laube T
    J Cataract Refract Surg; 2008 Jul; 34(7):1161-6. PubMed ID: 18571086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet radiation absorption of intraocular lenses.
    Laube T; Apel H; Koch HR
    Ophthalmology; 2004 May; 111(5):880-5. PubMed ID: 15121363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission spectrums and retinal blue-light irradiance values of untinted and yellow-tinted intraocular lenses.
    Tanito M; Okuno T; Ishiba Y; Ohira A
    J Cataract Refract Surg; 2010 Feb; 36(2):299-307. PubMed ID: 20152614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral transmittance of intraocular lenses under natural and artificial illumination: criteria analysis for choosing a suitable filter.
    Artigas JM; Felipe A; Navea A; Artigas C; García-Domene MC
    Ophthalmology; 2011 Jan; 118(1):3-8. PubMed ID: 20801517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ultraviolet B radiation on the absorption characteristics of various intraocular lenses.
    Kocak N; Kaynak S; Ilknur T; Ozkan S; Erdogan G; Cingil G
    Ophthalmologica; 2007; 221(1):29-35. PubMed ID: 17183198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sharp cutoff filters in intraocular lenses optimize the balance between light reception and light protection.
    van de Kraats J; van Norren D
    J Cataract Refract Surg; 2007 May; 33(5):879-87. PubMed ID: 17466865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Ultraviolet Light Filtering across Different Intraocular Lenses.
    García-Domene MC; Pérez-Vives C; Peris-Martínez C; Artigas JM
    Optom Vis Sci; 2018 Dec; 95(12):1129-1134. PubMed ID: 30451807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet-B phototoxicity and hypothetical photomelanomagenesis: intraocular and crystalline lens photoprotection.
    Mainster MA; Turner PL
    Am J Ophthalmol; 2010 Apr; 149(4):543-9. PubMed ID: 20346776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro.
    Sparrow JR; Miller AS; Zhou J
    J Cataract Refract Surg; 2004 Apr; 30(4):873-8. PubMed ID: 15093654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-transmission-spectrum comparison of foldable intraocular lenses.
    Ernest PH
    J Cataract Refract Surg; 2004 Aug; 30(8):1755-8. PubMed ID: 15313303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression.
    Kernt M; Neubauer AS; Liegl R; Eibl KH; Alge CS; Lackerbauer CA; Ulbig MW; Kampik A
    J Cataract Refract Surg; 2009 Feb; 35(2):354-62. PubMed ID: 19185255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering and light transmittance of cadaver eye-explanted intraocular lenses of different materials.
    Morris C; Werner L; Barra D; Liu E; Stallings S; Floyd A
    J Cataract Refract Surg; 2014 Jan; 40(1):129-37. PubMed ID: 24355724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AcrySof Natural intraocular lens optical characteristics during and after different doses of ultraviolet-visible light illumination.
    Mencucci R; Mercatelli L; Fusi F; Ponchietti C; Monici M; Menchini U
    J Cataract Refract Surg; 2006 Nov; 32(11):1961-5. PubMed ID: 17081904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet (UV) transmittance characteristics of daily disposable and silicone hydrogel contact lenses.
    Moore L; Ferreira JT
    Cont Lens Anterior Eye; 2006 Jul; 29(3):115-22. PubMed ID: 16697696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-blocking IOLs decrease photoreception without providing significant photoprotection.
    Mainster MA; Turner PL
    Surv Ophthalmol; 2010; 55(3):272-89. PubMed ID: 19883931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility.
    Werner L; Mamalis N; Romaniv N; Haymore J; Haugen B; Hunter B; Stevens S
    J Cataract Refract Surg; 2006 Jul; 32(7):1214-21. PubMed ID: 16857512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light transmittance of 1-piece hydrophobic acrylic intraocular lenses with surface light scattering removed from cadaver eyes.
    Werner L; Morris C; Liu E; Stallings S; Floyd A; Ollerton A; Leishman L; Bodnar Z
    J Cataract Refract Surg; 2014 Jan; 40(1):114-20. PubMed ID: 24269140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of ionizing radiation on intraocular lenses.
    Ellerin BE; Nisce LZ; Roberts CW; Thornell C; Sabbas A; Wang H; Li PM; Nori D
    Int J Radiat Oncol Biol Phys; 2001 Sep; 51(1):184-208. PubMed ID: 11516869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light scattering and light transmittance in a series of calcified single-piece hydrophilic acrylic intraocular lenses of the same design.
    Barra D; Werner L; Costa JL; Morris C; Ribeiro T; Ventura BV; Dornelles F
    J Cataract Refract Surg; 2014 Jan; 40(1):121-8. PubMed ID: 24269137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in UV-visible transmittance of silicone-hydrogel contact lenses induced by wear.
    Lira M; Dos Santos Castanheira EM; Santos L; Azeredo J; Yebra-Pimentel E; Real Oliveira ME
    Optom Vis Sci; 2009 Apr; 86(4):332-9. PubMed ID: 19289976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.