BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 18571337)

  • 1. Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age.
    Zacharatou Jarlskog C; Paganetti H
    Int J Radiat Oncol Biol Phys; 2008 Sep; 72(1):228-35. PubMed ID: 18571337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy.
    Athar BS; Paganetti H
    Phys Med Biol; 2009 Aug; 54(16):4907-26. PubMed ID: 19641238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of whole-body phantom designs to estimate organ equivalent neutron doses for secondary cancer risk assessment in proton therapy.
    Moteabbed M; Geyer A; Drenkhahn R; Bolch WE; Paganetti H
    Phys Med Biol; 2012 Jan; 57(2):499-515. PubMed ID: 22217682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation-induced cancers from modern radiotherapy techniques: intensity-modulated radiotherapy versus proton therapy.
    Yoon M; Ahn SH; Kim J; Shin DH; Park SY; Lee SB; Shin KH; Cho KH
    Int J Radiat Oncol Biol Phys; 2010 Aug; 77(5):1477-85. PubMed ID: 19879701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The risk of multiple primary breast and thyroid carcinomas.
    Adjadj E; Rubino C; Shamsaldim A; Lê MG; Schlumberger M; de Vathaire F
    Cancer; 2003 Sep; 98(6):1309-17. PubMed ID: 12973856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study shows no significant difference in second cancer risk between 6- and 18-MV intensity-modulated radiation therapy.
    Kry SF; Salehpour M; Titt U; White RA; Stovall M; Followill D
    Radiother Oncol; 2009 Apr; 91(1):132-7. PubMed ID: 19147246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity-modulated radiation therapy, protons, and the risk of second cancers.
    Hall EJ
    Int J Radiat Oncol Biol Phys; 2006 May; 65(1):1-7. PubMed ID: 16618572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms.
    Zacharatou Jarlskog C; Lee C; Bolch WE; Xu XG; Paganetti H
    Phys Med Biol; 2008 Feb; 53(3):693-717. PubMed ID: 18199910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of radiation-induced second cancer risks in proton therapy and IMRT for organs inside the primary radiation field.
    Paganetti H; Athar BS; Moteabbed M; A Adams J; Schneider U; Yock TI
    Phys Med Biol; 2012 Oct; 57(19):6047-61. PubMed ID: 22968191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment.
    Jiang H; Wang B; Xu XG; Suit HD; Paganetti H
    Phys Med Biol; 2005 Sep; 50(18):4337-53. PubMed ID: 16148397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of cancer risks from radiotherapy of benign diseases.
    Trott KR; Kamprad F
    Strahlenther Onkol; 2006 Aug; 182(8):431-6. PubMed ID: 16896588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of different dose scoring methods on organ-specific neutron dose calculations in proton therapy.
    Jarlskog CZ; Paganetti H
    Phys Med Biol; 2008 Sep; 53(17):4523-32. PubMed ID: 18677040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of neutron dose equivalent and its dependence on beam configuration for a passive scattering proton delivery system.
    Wang X; Sahoo N; Zhu RX; Zullo JR; Gillin MT
    Int J Radiat Oncol Biol Phys; 2010 Apr; 76(5):1563-70. PubMed ID: 20097484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary neutrons in clinical proton radiotherapy: a charged issue.
    Brenner DJ; Hall EJ
    Radiother Oncol; 2008 Feb; 86(2):165-70. PubMed ID: 18192046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 131I ablation treatment in young females after the Chernobyl accident.
    Travis CC; Stabin MG
    J Nucl Med; 2006 Oct; 47(10):1723-7. PubMed ID: 17015910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Risk of second malignancy after non-Hodgkin's lymphoma: a British Cohort Study.
    Mudie NY; Swerdlow AJ; Higgins CD; Smith P; Qiao Z; Hancock BW; Hoskin PJ; Linch DC
    J Clin Oncol; 2006 Apr; 24(10):1568-74. PubMed ID: 16520465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk estimation of radiation-induced thyroid cancer from treatment of brain tumors in adults and children.
    Mazonakis M; Damilakis J; Varveris H; Fasoulaki M; Gourtsoyiannis N
    Int J Oncol; 2003 Jan; 22(1):221-5. PubMed ID: 12469208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient neutron dose equivalent exposures outside of the proton therapy treatment field.
    Polf JC; Newhauser WD; Titt U
    Radiat Prot Dosimetry; 2005; 115(1-4):154-8. PubMed ID: 16381704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic estimates of secondary neutron dose in proton therapy.
    Anferov V
    Phys Med Biol; 2010 Dec; 55(24):7509-22. PubMed ID: 21098918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary neutron doses received by paediatric patients during intracranial proton therapy treatments.
    Sayah R; Farah J; Donadille L; Hérault J; Delacroix S; De Marzi L; De Oliveira A; Vabre I; Stichelbaut F; Lee C; Bolch WE; Clairand I
    J Radiol Prot; 2014 Jun; 34(2):279-96. PubMed ID: 24704989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.