These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18571632)

  • 1. Cholinesterases in development and disease.
    Anglister L; Etlin A; Finkel E; Durrant AR; Lev-Tov A
    Chem Biol Interact; 2008 Sep; 175(1-3):92-100. PubMed ID: 18571632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rationale for diagnosing deficiency of ChEs and for applying exogenous HuChEs to the treatment of diseases.
    Shen ZX
    Med Hypotheses; 2008; 70(1):43-51. PubMed ID: 17587508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of cholinesterases in brain and non-brain tumours.
    Vidal CJ
    Chem Biol Interact; 2005 Dec; 157-158():227-32. PubMed ID: 16256970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus.
    Darvesh S; Hopkins DA
    J Comp Neurol; 2003 Aug; 463(1):25-43. PubMed ID: 12811800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AChE membrane-binding tail PRiMA is down-regulated in muscle and nerve of mice with muscular dystrophy by merosin deficiency.
    Vidal CJ; Montenegro MF; Muñoz-Delgado E; Campoy FJ; Cabezas-Herrera J; Moral-Naranjo MT
    Chem Biol Interact; 2013 Mar; 203(1):330-4. PubMed ID: 22906800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice.
    Marques MJ; Taniguti AP; Minatel E; Neto HS
    Anat Rec (Hoboken); 2007 Feb; 290(2):181-7. PubMed ID: 17441210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity.
    Hartmann J; Kiewert C; Duysen EG; Lockridge O; Greig NH; Klein J
    J Neurochem; 2007 Mar; 100(5):1421-9. PubMed ID: 17212694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine receptor organization at the dystrophic extraocular muscle neuromuscular junction.
    Marques MJ; Pertille A; Carvalho CL; Santo Neto H
    Anat Rec (Hoboken); 2007 Jul; 290(7):846-54. PubMed ID: 17492672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is dystrophin present in the nerve terminal at the neuromuscular junction? An immunohistochemical study of the heterozygote dystrophic (mdx) mouse.
    Huard J; Fortier LP; Labrecque C; Dansereau G; Tremblay JP
    Synapse; 1991 Feb; 7(2):135-40. PubMed ID: 2011828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections.
    Finkel E; Etlin A; Cherniak M; Mor Y; Lev-Tov A; Anglister L
    J Comp Neurol; 2014 Oct; 522(15):3437-55. PubMed ID: 24752570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice.
    Durrant AR; Tamayev L; Anglister L
    Front Mol Neurosci; 2012; 5():73. PubMed ID: 22723768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholine receptor distribution and synapse elimination at the developing neuromuscular junction of mdx mice.
    Minatel E; Neto HS; Marques MJ
    Muscle Nerve; 2003 Nov; 28(5):561-9. PubMed ID: 14571457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased expression of acetylcholine receptors in the diaphragm muscle of MDX mice.
    Ghedini PC; Viel TA; Honda L; Avellar MC; Godinho RO; Lima-Landman MT; Lapa AJ; Souccar C
    Muscle Nerve; 2008 Dec; 38(6):1585-94. PubMed ID: 19016551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of dystrophin leads to the selective loss of superior cervical ganglion neurons projecting to muscular targets in genetically dystrophic mdx mice.
    De Stefano ME; Leone L; Lombardi L; Paggi P
    Neurobiol Dis; 2005 Dec; 20(3):929-42. PubMed ID: 16023353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic remodeling at the skeletal neuromuscular junction of acetylcholinesterase knockout mice and its physiological relevance.
    Girard E; Barbier J; Chatonnet A; Krejci E; Molgó J
    Chem Biol Interact; 2005 Dec; 157-158():87-96. PubMed ID: 16274683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional and genotypic differences in intrinsic electrophysiological properties of cerebellar Purkinje neurons from wild-type and dystrophin-deficient mdx mice.
    Snow WM; Anderson JE; Fry M
    Neurobiol Learn Mem; 2014 Jan; 107():19-31. PubMed ID: 24220092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of commissural projections to bulbospinal activation of locomotion in the in vitro neonatal rat spinal cord.
    Cowley KC; Zaporozhets E; Joundi RA; Schmidt BJ
    J Neurophysiol; 2009 Mar; 101(3):1171-8. PubMed ID: 19118107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
    Darvesh S; Arora RC; Martin E; Magee D; Hopkins DA; Armour JA
    Exp Neurol; 2004 Aug; 188(2):461-70. PubMed ID: 15246845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity, molecular forms, and cytochemistry of cholinesterases in developing rat diaphragm.
    Brzin M; Sketelj J; Tennyson VM; Kiauta T; Budininkas-Schoenebeck M
    Muscle Nerve; 1981; 4(6):505-13. PubMed ID: 7311990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.