BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18571632)

  • 21. Expression and distribution of acetylcholinesterase among the cellular components of the neuromuscular junction formed in human myotube in vitro.
    Mis K; Mars T; Jevsek M; Strasek H; Golicnik M; Brecelj J; Komel R; King MP; Miranda AF; Grubic Z
    Chem Biol Interact; 2005 Dec; 157-158():29-35. PubMed ID: 16256091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiology of duchenne muscular dystrophy: current hypotheses.
    Deconinck N; Dan B
    Pediatr Neurol; 2007 Jan; 36(1):1-7. PubMed ID: 17162189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetylcholinesterase and butyrylcholinesterase activity in the atria of the heart of adult albino rats.
    Slavíková J; Vlk J; Hlavicková V
    Physiol Bohemoslov; 1982; 31(5):407-14. PubMed ID: 6217470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord.
    Gordon IT; Whelan PJ
    J Neurophysiol; 2006 Dec; 96(6):3122-9. PubMed ID: 16956991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acetylcholinesterase in the developing rat spinal cord: an enzyme histochemical study.
    Oudega M; Marani E
    Eur J Morphol; 1990; 28(2-4):379-93. PubMed ID: 2245142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The use of cholinesterases in ecotoxicology.
    Nunes B
    Rev Environ Contam Toxicol; 2011; 212():29-59. PubMed ID: 21432054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ontogenetic differences in the regional and cellular acetylcholinesterase and butyrylcholinesterase activity in the rat brain.
    Lassiter TL; Barone S; Padilla S
    Brain Res Dev Brain Res; 1998 Jan; 105(1):109-23. PubMed ID: 9497085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and enhances defensive behaviour in mice.
    Sekiguchi M; Zushida K; Yoshida M; Maekawa M; Kamichi S; Yoshida M; Sahara Y; Yuasa S; Takeda S; Wada K
    Brain; 2009 Jan; 132(Pt 1):124-35. PubMed ID: 18927146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The expression of cholinesterases in human renal tumours varies according to their histological types.
    Muñoz-Delgado E; Montenegro MF; Morote-García JC; Campoy FJ; Cabezas-Herrera J; Kovacs G; Vidal CJ
    Chem Biol Interact; 2008 Sep; 175(1-3):340-2. PubMed ID: 18482720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological changes in the trigemino-rubral pathway in dystrophic (mdx) mice.
    Pinto ML; Tokunaga HH; Souccar C; Schoorlemmer GH; Lapa Rde C
    Neurosci Lett; 2007 Apr; 416(2):175-9. PubMed ID: 17324512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice.
    Hartmann J; Kiewert C; Duysen EG; Lockridge O; Klein J
    Neurochem Int; 2008 May; 52(6):972-8. PubMed ID: 18023504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice.
    Adler M; Manley HA; Purcell AL; Deshpande SS; Hamilton TA; Kan RK; Oyler G; Lockridge O; Duysen EG; Sheridan RE
    Muscle Nerve; 2004 Sep; 30(3):317-27. PubMed ID: 15318343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cholinesterases (ChEs) and the cholinergic system in ontogenesis and phylogenesis, and non-classical roles of cholinesterases - a review.
    Karczmar AG
    Chem Biol Interact; 2010 Sep; 187(1-3):34-43. PubMed ID: 20226178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of neuronal projections in the dystrophin-deficient mdx mouse is not progressive.
    Pinto ML; Tokunaga HH; Souccar C; Schoorlemmer GH; da Silva Lapa Rde C
    Brain Res; 2008 Aug; 1224():127-32. PubMed ID: 18603229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of calcitonin gene-related peptide at the neuromuscular junction of mdx mice.
    Marques MJ; Minatel E; Guimarães AO; Neto HS
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Aug; 279(2):798-803. PubMed ID: 15278951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of cholinesterases in human prostate and sperm: implications in cancer and fertility.
    Nieto-Cerón S; Vargas-López H; Pérez-Albacete M; Tovar-Zapata I; Martínez-Hernández P; Rodríguez-López JN; Cabezas-Herrera J
    Chem Biol Interact; 2010 Sep; 187(1-3):432-5. PubMed ID: 20356562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dystrophin: localization and presumed function.
    Miyatake M; Miike T; Zhao JE; Yoshioka K; Uchino M; Usuku G
    Muscle Nerve; 1991 Feb; 14(2):113-9. PubMed ID: 1825695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Terminal Schwann cell structure is altered in diaphragm of mdx mice.
    Personius KE; Sawyer RP
    Muscle Nerve; 2005 Nov; 32(5):656-63. PubMed ID: 16025531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-homologies and structural differences between human cholinesterases revealed by antibodies against cDNA-produced human butyrylcholinesterase peptides.
    Dreyfus P; Zevin-Sonkin D; Seidman S; Prody C; Zisling R; Zakut H; Soreq H
    J Neurochem; 1988 Dec; 51(6):1858-67. PubMed ID: 2460589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.