BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 18571669)

  • 1. Thermodynamic aspects of DsbD-mediated electron transport.
    Rozhkova A; Glockshuber R
    J Mol Biol; 2008 Jul; 380(5):783-8. PubMed ID: 18571669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the intramolecular disulfide exchange between the periplasmic domains of DsbD.
    Rozhkova A; Glockshuber R
    J Mol Biol; 2007 Apr; 367(4):1162-70. PubMed ID: 17303162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis and kinetics of DsbD-dependent cytochrome c maturation.
    Stirnimann CU; Rozhkova A; Grauschopf U; Grütter MG; Glockshuber R; Capitani G
    Structure; 2005 Jul; 13(7):985-93. PubMed ID: 16004871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD.
    Rozhkova A; Stirnimann CU; Frei P; Grauschopf U; Brunisholz R; Grütter MG; Capitani G; Glockshuber R
    EMBO J; 2004 Apr; 23(8):1709-19. PubMed ID: 15057279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure and backbone dynamics of the cysteine 103 to serine mutant of the N-terminal domain of DsbD from Neisseria meningitidis.
    Quinternet M; Tsan P; Selme L; Beaufils C; Jacob C; Boschi-Muller S; Averlant-Petit MC; Branlant G; Cung MT
    Biochemistry; 2008 Dec; 47(48):12710-20. PubMed ID: 18983169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A periplasmic reducing system protects single cysteine residues from oxidation.
    Depuydt M; Leonard SE; Vertommen D; Denoncin K; Morsomme P; Wahni K; Messens J; Carroll KS; Collet JF
    Science; 2009 Nov; 326(5956):1109-11. PubMed ID: 19965429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of a disulfide isomerization system.
    Collet JF; Riemer J; Bader MW; Bardwell JC
    J Biol Chem; 2002 Jul; 277(30):26886-92. PubMed ID: 12004064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD.
    Goulding CW; Sawaya MR; Parseghian A; Lim V; Eisenberg D; Missiakas D
    Biochemistry; 2002 Jun; 41(22):6920-7. PubMed ID: 12033924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide bond formation system in Escherichia coli.
    Inaba K
    J Biochem; 2009 Nov; 146(5):591-7. PubMed ID: 19567379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The disulfide bond formation (Dsb) system.
    Ito K; Inaba K
    Curr Opin Struct Biol; 2008 Aug; 18(4):450-8. PubMed ID: 18406599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli.
    Grimshaw JP; Stirnimann CU; Brozzo MS; Malojcic G; Grütter MG; Capitani G; Glockshuber R
    J Mol Biol; 2008 Jul; 380(4):667-80. PubMed ID: 18565543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA.
    Bushweller JH
    J Mol Biol; 2020 Aug; 432(18):5091-5103. PubMed ID: 32305461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Periplasmatic disulfide oxidoreductases from bacterium Escherichia coli--their structure and function].
    Skórko-Glónekv J; Sobiecka A
    Postepy Biochem; 2005; 51(4):459-67. PubMed ID: 16676581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of the thioredoxin domain of Escherichia coli DsbE protein reveals a weak reductant.
    Li Q; Hu H; Xu G
    Biochem Biophys Res Commun; 2001 May; 283(4):849-53. PubMed ID: 11350062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling.
    Shouldice SR; Cho SH; Boyd D; Heras B; Eser M; Beckwith J; Riggs P; Martin JL; Berkmen M
    Mol Microbiol; 2010 Jan; 75(1):13-28. PubMed ID: 19968787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of the complex between DsbD and PilB N-terminal domains from Neisseria meningitidis necessitates an adaptability of nDsbD.
    Quinternet M; Tsan P; Selme-Roussel L; Jacob C; Boschi-Muller S; Branlant G; Cung MT
    Structure; 2009 Jul; 17(7):1024-33. PubMed ID: 19604482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations of the membrane-bound disulfide reductase DsbD that block electron transfer steps from cytoplasm to periplasm in Escherichia coli.
    Cho SH; Beckwith J
    J Bacteriol; 2006 Jul; 188(14):5066-76. PubMed ID: 16816179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region.
    Ouyang N; Gao YG; Hu HY; Xia ZX
    Proteins; 2006 Dec; 65(4):1021-31. PubMed ID: 17019698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade.
    Katzen F; Beckwith J
    Cell; 2000 Nov; 103(5):769-79. PubMed ID: 11114333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.