These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18571687)

  • 1. The effect of boundary conditions on guided wave propagation in two-dimensional models of healing bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    Ultrasonics; 2008 Nov; 48(6-7):598-606. PubMed ID: 18571687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Fotiadis DI; Malizos KN
    Ultrasound Med Biol; 2006 May; 32(5):693-708. PubMed ID: 16677929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
    Shefelbine SJ; Augat P; Claes L; Simon U
    J Biomech; 2005 Dec; 38(12):2440-50. PubMed ID: 16214492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic monitoring of bone fracture healing.
    Protopappas VC; Vavva MG; Fotiadis DI; Malizos KN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1243-55. PubMed ID: 18599412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of guided mode propagation in fractured long bones.
    Xu K; Liu D; Ta D; Hu B; Wang W
    Ultrasonics; 2014 Jul; 54(5):1210-8. PubMed ID: 24139020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones.
    Potsika VT; Grivas KN; Protopappas VC; Vavva MG; Raum K; Rohrbach D; Polyzos D; Fotiadis DI
    Ultrasonics; 2014 Jul; 54(5):1219-30. PubMed ID: 24091149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiogenesis in bone fracture healing: a bioregulatory model.
    Geris L; Gerisch A; Sloten JV; Weiner R; Oosterwyck HV
    J Theor Biol; 2008 Mar; 251(1):137-58. PubMed ID: 18155732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element simulation of the generation and detection by air-coupled transducers of guided waves in viscoelastic and anisotropic materials.
    Hosten B; Biateau C
    J Acoust Soc Am; 2008 Apr; 123(4):1963-71. PubMed ID: 18397004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stochastic model for propagation through tissue.
    Lacaze B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2180-6. PubMed ID: 19942505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D Model of sound pressure field in a meridinal section plane of fruit.
    Mizrach A; Galili N; Rosenhouse G
    Ultrasonics; 2009 Jan; 49(1):83-8. PubMed ID: 18657838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of tissue differentiation and bone healing predictions to tissue properties.
    Isaksson H; van Donkelaar CC; Ito K
    J Biomech; 2009 Mar; 42(5):555-64. PubMed ID: 19233361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells.
    Andreykiv A; van Keulen F; Prendergast PJ
    Biomech Model Mechanobiol; 2008 Dec; 7(6):443-61. PubMed ID: 17972123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evaluation of fracture healing process of long bones using guided ultrasound waves: a computational feasibility study.
    Guo X; Yang D; Zhang D; Li W; Qiu Y; Wu J
    J Acoust Soc Am; 2009 May; 125(5):2834-7. PubMed ID: 19425628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse and Oblique Long Bone Fracture Evaluation by Low Order Ultrasonic Guided Waves: A Simulation Study.
    Li Y; Liu D; Xu K; Ta D; Le LH; Wang W
    Biomed Res Int; 2017; 2017():3083141. PubMed ID: 28182135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the most important cellular characteristics for fracture healing using design of experiments methods.
    Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K
    J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Space Radiation concept for mesh-free semi-analytical technique to model wave fields in complex geometries.
    Banerjee S; Das S; Kundu T; Placko D
    Ultrasonics; 2009 Dec; 49(8):615-22. PubMed ID: 19493555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary element simulation of ultrasonic backscattering during the fracture healing process.
    Potsika VT; Grivas KN; Gortsas T; Protopappas VC; Polyzos DK; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2913-2916. PubMed ID: 28268923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency spectra of beam-plates revisited.
    Guo YQ; Chen WQ; Pao YH
    Ultrasonics; 2009 Jan; 49(1):4-9. PubMed ID: 18606431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.