BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18571730)

  • 1. d-Amphetamine inhibits inwardly rectifying potassium channels in Xenopus oocytes expression system.
    Lee CH; Liou HH; Lu KL; Shen YC; Tsai MC
    Neurotoxicology; 2008 Jul; 29(4):638-46. PubMed ID: 18571730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PKA-mediated phosphorylation is a novel mechanism for levetiracetam, an antiepileptic drug, activating ROMK1 channels.
    Lee CH; Lee CY; Tsai TS; Liou HH
    Biochem Pharmacol; 2008 Jul; 76(2):225-35. PubMed ID: 18547545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gabapentin activates ROMK1 channels by a protein kinase A (PKA)-dependent mechanism.
    Lee CH; Tsai TS; Liou HH
    Br J Pharmacol; 2008 May; 154(1):216-25. PubMed ID: 18311184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pregabalin activates ROMK1 channels via cAMP-dependent protein kinase and protein kinase C.
    Lee CH; Liou HH
    Eur J Pharmacol; 2014 Oct; 740():35-44. PubMed ID: 25008072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative charge at the consensus sequence for the serum- and glucocorticoid-inducible kinase, SGK1, determines pH sensitivity of the renal outer medullary K+ channel, ROMK1.
    Palmada M; Embark HM; Wyatt AW; Böhmer C; Lang F
    Biochem Biophys Res Commun; 2003 Aug; 307(4):967-72. PubMed ID: 12878206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PKA-induced stimulation of ROMK1 channel activity is governed by both tethering and non-tethering domains of an A kinase anchor protein.
    Ali S; Wei Y; Lerea KM; Becker L; Rubin CS; Wang W
    Cell Physiol Biochem; 2001; 11(3):135-42. PubMed ID: 11410709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and structural characterization of PKA-mediated pHi gating of ROMK1 channels.
    Lee CH; Huang PT; Lou KL; Liou HH
    J Mol Graph Model; 2008 Oct; 27(3):332-41. PubMed ID: 18620882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.
    Leipziger J; MacGregor GG; Cooper GJ; Xu J; Hebert SC; Giebisch G
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F919-26. PubMed ID: 11053053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROMK1 channel activity is regulated by monoubiquitination.
    Lin DH; Sterling H; Wang Z; Babilonia E; Yang B; Dong K; Hebert SC; Giebisch G; Wang WH
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4306-11. PubMed ID: 15767585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels.
    Lin D; Sterling H; Lerea KM; Giebisch G; Wang WH
    J Biol Chem; 2002 Nov; 277(46):44278-84. PubMed ID: 12221079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C mediated pH(i)-regulation of ROMK1 channels via a phosphatidylinositol-4,5-bisphosphate-dependent mechanism.
    Huang PT; Lee CH; Liou HH; Lou KL
    J Mol Model; 2012 Jul; 18(7):2929-41. PubMed ID: 22139477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
    Liou HH; Zhou SS; Huang CL
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5820-5. PubMed ID: 10318968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the NH2 terminus of the cloned renal K+ channel, ROMK1, in arachidonic acid-mediated inhibition.
    Macica CM; Yang Y; Lerea K; Hebert SC; Wang W
    Am J Physiol; 1998 Jan; 274(1):F175-81. PubMed ID: 9458837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue.
    Wible BA; Taglialatela M; Ficker E; Brown AM
    Nature; 1994 Sep; 371(6494):246-9. PubMed ID: 8078584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms.
    Leung YM; Zeng WZ; Liou HH; Solaro CR; Huang CL
    J Biol Chem; 2000 Apr; 275(14):10182-9. PubMed ID: 10744702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na(+) sensitivity of ROMK1 K(+) channel: role of the Na(+)/H(+) antiporter.
    Sabirov RZ; Azimov RR; Ando-Akatsuka Y; Miyoshi T; Okada Y
    J Membr Biol; 1999 Nov; 172(1):67-76. PubMed ID: 10552015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of ROMK1 K+ channel activity involves phosphorylation processes.
    McNicholas CM; Wang W; Ho K; Hebert SC; Giebisch G
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8077-81. PubMed ID: 8058760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels.
    Lin D; Kamsteeg EJ; Zhang Y; Jin Y; Sterling H; Yue P; Roos M; Duffield A; Spencer J; Caplan M; Wang WH
    J Biol Chem; 2008 Mar; 283(12):7674-81. PubMed ID: 18211905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H bonding at the helix-bundle crossing controls gating in Kir potassium channels.
    Rapedius M; Fowler PW; Shang L; Sansom MS; Tucker SJ; Baukrowitz T
    Neuron; 2007 Aug; 55(4):602-14. PubMed ID: 17698013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.