These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 18572160)
1. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Zhao H; Oka K; Bringas P; Kaartinen V; Chai Y Dev Biol; 2008 Aug; 320(1):19-29. PubMed ID: 18572160 [TBL] [Abstract][Full Text] [Related]
2. TGF-beta mediated Dlx5 signaling plays a crucial role in osteo-chondroprogenitor cell lineage determination during mandible development. Oka K; Oka S; Hosokawa R; Bringas P; Brockhoff HC; Nonaka K; Chai Y Dev Biol; 2008 Sep; 321(2):303-9. PubMed ID: 18684439 [TBL] [Abstract][Full Text] [Related]
3. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development. Ho TV; Iwata J; Ho HA; Grimes WC; Park S; Sanchez-Lara PA; Chai Y Dev Biol; 2015 Apr; 400(2):180-90. PubMed ID: 25722190 [TBL] [Abstract][Full Text] [Related]
4. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions. Han A; Zhao H; Li J; Pelikan R; Chai Y Mol Cell Biol; 2014 Aug; 34(16):3120-31. PubMed ID: 24912677 [TBL] [Abstract][Full Text] [Related]
5. The role of TGF-beta signaling in regulating chondrogenesis and osteogenesis during mandibular development. Oka K; Oka S; Sasaki T; Ito Y; Bringas P; Nonaka K; Chai Y Dev Biol; 2007 Mar; 303(1):391-404. PubMed ID: 17204263 [TBL] [Abstract][Full Text] [Related]
7. Smad4 is required to regulate the fate of cranial neural crest cells. Ko SO; Chung IH; Xu X; Oka S; Zhao H; Cho ES; Deng C; Chai Y Dev Biol; 2007 Dec; 312(1):435-47. PubMed ID: 17964566 [TBL] [Abstract][Full Text] [Related]
8. TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. Yumoto K; Thomas PS; Lane J; Matsuzaki K; Inagaki M; Ninomiya-Tsuji J; Scott GJ; Ray MK; Ishii M; Maxson R; Mishina Y; Kaartinen V J Biol Chem; 2013 May; 288(19):13467-80. PubMed ID: 23546880 [TBL] [Abstract][Full Text] [Related]
9. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Park SO; Lee YJ; Seki T; Hong KH; Fliess N; Jiang Z; Park A; Wu X; Kaartinen V; Roman BL; Oh SP Blood; 2008 Jan; 111(2):633-42. PubMed ID: 17911384 [TBL] [Abstract][Full Text] [Related]
10. Alk5-mediated transforming growth factor β signaling acts upstream of fibroblast growth factor 10 to regulate the proliferation and maintenance of dental epithelial stem cells. Zhao H; Li S; Han D; Kaartinen V; Chai Y Mol Cell Biol; 2011 May; 31(10):2079-89. PubMed ID: 21402782 [TBL] [Abstract][Full Text] [Related]
11. Signaling through Tgf-beta type I receptor Alk5 is required for upper lip fusion. Li WY; Dudas M; Kaartinen V Mech Dev; 2008; 125(9-10):874-82. PubMed ID: 18586087 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of transforming growth factor-beta type II receptor signaling accelerates tooth formation in mouse first branchial arch explants. Chai Y; Zhao J; Mogharei A; Xu B; Bringas P; Shuler C; Warburton D Mech Dev; 1999 Aug; 86(1-2):63-74. PubMed ID: 10446266 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Wang Y; Cox MK; Coricor G; MacDougall M; Serra R Dev Biol; 2013 Oct; 382(1):27-37. PubMed ID: 23933490 [TBL] [Abstract][Full Text] [Related]
14. Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. Iwata J; Hosokawa R; Sanchez-Lara PA; Urata M; Slavkin H; Chai Y J Biol Chem; 2010 Feb; 285(7):4975-82. PubMed ID: 19959467 [TBL] [Abstract][Full Text] [Related]
15. Epithelial and ectomesenchymal role of the type I TGF-beta receptor ALK5 during facial morphogenesis and palatal fusion. Dudas M; Kim J; Li WY; Nagy A; Larsson J; Karlsson S; Chai Y; Kaartinen V Dev Biol; 2006 Aug; 296(2):298-314. PubMed ID: 16806156 [TBL] [Abstract][Full Text] [Related]
16. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Sridurongrit S; Larsson J; Schwartz R; Ruiz-Lozano P; Kaartinen V Dev Biol; 2008 Oct; 322(1):208-18. PubMed ID: 18718461 [TBL] [Abstract][Full Text] [Related]
17. Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Matsunobu T; Torigoe K; Ishikawa M; de Vega S; Kulkarni AB; Iwamoto Y; Yamada Y Dev Biol; 2009 Aug; 332(2):325-38. PubMed ID: 19501582 [TBL] [Abstract][Full Text] [Related]
18. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito Y; Yeo JY; Chytil A; Han J; Bringas P; Nakajima A; Shuler CF; Moses HL; Chai Y Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342 [TBL] [Abstract][Full Text] [Related]
19. The role of transforming growth factor-beta signalling in the patterning of the proximal processes of the murine dentary. Anthwal N; Chai Y; Tucker AS Dev Dyn; 2008 Jun; 237(6):1604-13. PubMed ID: 18498113 [TBL] [Abstract][Full Text] [Related]
20. Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. Andersson O; Reissmann E; Ibáñez CF EMBO Rep; 2006 Aug; 7(8):831-7. PubMed ID: 16845371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]