These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18572250)

  • 21. Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings.
    Johnson MD; Franklin RK; Gibson MD; Brown RB; Kipke DR
    J Neurosci Methods; 2008 Sep; 174(1):62-70. PubMed ID: 18692090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A technique for microiontophoretic study of single neurones in the behaving monkey.
    Perrett DI; Rolls ET
    J Neurosci Methods; 1985 Feb; 12(4):289-95. PubMed ID: 3921775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corollary Discharge Mechanisms During Vocal Production in Marmoset Monkeys.
    Eliades SJ; Wang X
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2019 Sep; 4(9):805-812. PubMed ID: 31420219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Behavioral correlates of action potentials recorded chronically inside the Cone Electrode.
    Kennedy PR; Bakay RA; Sharpe SM
    Neuroreport; 1992 Jul; 3(7):605-8. PubMed ID: 1421115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sustained firing in auditory cortex evoked by preferred stimuli.
    Wang X; Lu T; Snider RK; Liang L
    Nature; 2005 May; 435(7040):341-6. PubMed ID: 15902257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes.
    Blake AJ; Rodgers FC; Bassuener A; Hippensteel JA; Pearce TM; Pearce TR; Zarnowska ED; Pearce RA; Williams JC
    J Neurosci Methods; 2010 May; 189(1):5-13. PubMed ID: 20219536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review of signal distortion through metal microelectrode recording circuits and filters.
    Nelson MJ; Pouget P; Nilsen EA; Patten CD; Schall JD
    J Neurosci Methods; 2008 Mar; 169(1):141-57. PubMed ID: 18242715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain.
    Grinvald A
    Annu Rev Neurosci; 1985; 8():263-305. PubMed ID: 3885828
    [No Abstract]   [Full Text] [Related]  

  • 31. Subthreshold Activity Underlying the Diversity and Selectivity of the Primary Auditory Cortex Studied by Intracellular Recordings in Awake Marmosets.
    Gao L; Wang X
    Cereb Cortex; 2019 Mar; 29(3):994-1005. PubMed ID: 29377991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A bio-friendly and economical technique for chronic implantation of multiple microelectrode arrays.
    Chhatbar PY; von Kraus LM; Semework M; Francis JT
    J Neurosci Methods; 2010 May; 188(2):187-94. PubMed ID: 20153370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavoprotein fluorescence imaging-based electrode implantation for subfield-targeted chronic recording in the mouse auditory cortex.
    Nishikawa J; Ohtaka Y; Tachibana Y; Yanagawa Y; Osanai H; Haga T; Tateno T
    J Neurosci Methods; 2018 Jan; 293():77-85. PubMed ID: 28851513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contextual effects of noise on vocalization encoding in primary auditory cortex.
    Ni R; Bender DA; Shanechi AM; Gamble JR; Barbour DL
    J Neurophysiol; 2017 Feb; 117(2):713-727. PubMed ID: 27881720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurophysiological recordings in freely moving monkeys.
    Sun NL; Lei YL; Kim BH; Ryou JW; Ma YY; Wilson FA
    Methods; 2006 Mar; 38(3):202-9. PubMed ID: 16530628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.
    Vähäsöyrinki M; Tuukkanen T; Sorvoja H; Pudas M
    J Neurosci Methods; 2009 Jun; 180(2):290-5. PubMed ID: 19379772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of population decoding with distance metrics.
    Hofer SB; Mrsic-Flogel TD; Horvath D; Grothe B; Lesica NA
    Neural Netw; 2010 Aug; 23(6):728-32. PubMed ID: 20488662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel simplistic fabrication technique for cranial epidural electrodes for chronic recording and stimulation in rats.
    Russell C; Kissane RWP; Steenson DP; Chakrabarty S
    J Neurosci Methods; 2019 Jan; 311():239-242. PubMed ID: 30389487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new type of recording chamber with an easy-to-exchange microdrive array for chronic recordings in macaque monkeys.
    Galashan FO; Rempel HC; Meyer A; Gruber-Dujardin E; Kreiter AK; Wegener D
    J Neurophysiol; 2011 Jun; 105(6):3092-105. PubMed ID: 21451061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial representation of corticofugal input in the inferior colliculus: a multicontact silicon probe approach.
    Bledsoe SC; Shore SE; Guitton MJ
    Exp Brain Res; 2003 Dec; 153(4):530-42. PubMed ID: 14574428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.