BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 18572891)

  • 1. Self-assembly of Peptide nanotubes in an organic solvent.
    Krysmann MJ; Castelletto V; McKendrick JE; Clifton LA; W Hamley I; Harris PJ; King SM
    Langmuir; 2008 Aug; 24(15):8158-62. PubMed ID: 18572891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly and hydrogelation of an amyloid peptide fragment.
    Krysmann MJ; Castelletto V; Kelarakis A; Hamley IW; Hule RA; Pochan DJ
    Biochemistry; 2008 Apr; 47(16):4597-605. PubMed ID: 18370402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly in aqueous solution of a modified amyloid beta peptide fragment.
    Castelletto V; Hamley IW; Harris PJ
    Biophys Chem; 2008 Nov; 138(1-2):29-35. PubMed ID: 18818009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. I. Morphological investigation.
    Castelletto V; Hamley IW; Harris PJ; Olsson U; Spencer N
    J Phys Chem B; 2009 Jul; 113(29):9978-87. PubMed ID: 19555054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of a modified amyloid peptide fragment: pH-responsiveness and nematic phase formation.
    Hamley IW; Castelletto V; Moulton C; Myatt D; Siligardi G; Oliveira CL; Pedersen JS; Abutbul I; Danino D
    Macromol Biosci; 2010 Jan; 10(1):40-8. PubMed ID: 19768777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nematic and columnar ordering of a PEG-peptide conjugate in aqueous solution.
    Hamley IW; Krysmann MJ; Kelarakis A; Castelletto V; Noirez L; Hule RA; Pochan DJ
    Chemistry; 2008; 14(36):11369-75. PubMed ID: 18618539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation.
    Hamley IW; Nutt DR; Brown GD; Miravet JF; Escuder B; Rodríguez-Llansola F
    J Phys Chem B; 2010 Jan; 114(2):940-51. PubMed ID: 20039666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution.
    Castelletto V; Hamley IW
    Biophys Chem; 2009 May; 141(2-3):169-74. PubMed ID: 19232813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile.
    da Silva ER; Alves WA; Castelletto V; Reza M; Ruokolainen J; Hussain R; Hamley IW
    Chem Commun (Camb); 2015 Jul; 51(58):11634-7. PubMed ID: 26094619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of single-wall peptide nanotubes: in situ flow aligning X-ray diffraction.
    Castelletto V; Nutt DR; Hamley IW; Bucak S; Cenker C; Olsson U
    Chem Commun (Camb); 2010 Sep; 46(34):6270-2. PubMed ID: 20668745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of end-capping on the self-assembly of model amyloid peptide fragments.
    Castelletto V; Hamley IW; Cenker Ç; Olsson U; Adamcik J; Mezzenga R; Miravet JF; Escuder B; Rodríguez-Llansola F
    J Phys Chem B; 2011 Mar; 115(9):2107-16. PubMed ID: 21309578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous self-assembly of unsymmetric Peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces.
    Claussen RC; Rabatic BM; Stupp SI
    J Am Chem Soc; 2003 Oct; 125(42):12680-1. PubMed ID: 14558795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting amyloid fibril lamination for nanotube self-assembly.
    Lu K; Jacob J; Thiyagarajan P; Conticello VP; Lynn DG
    J Am Chem Soc; 2003 May; 125(21):6391-3. PubMed ID: 12785778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of biotinylated peptide nanotubes for arranging proteins.
    Matsumura S; Uemura S; Mihara H
    Mol Biosyst; 2005 Jul; 1(2):146-8. PubMed ID: 16880977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of a designed amyloid peptide containing the functional thienylalanine unit.
    Hamley IW; Brown GD; Castelletto V; Cheng G; Venanzi M; Caruso M; Placidi E; Aleman C; Revilla-López G; Zanuy D
    J Phys Chem B; 2010 Aug; 114(32):10674-83. PubMed ID: 20662537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of amylin(20-29) amide-bond derivatives into helical ribbons and peptide nanotubes rather than fibrils.
    Elgersma RC; Meijneke T; Posthuma G; Rijkers DT; Liskamp RM
    Chemistry; 2006 May; 12(14):3714-25. PubMed ID: 16528792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleobase-directed amyloid nanotube assembly.
    Liu P; Ni R; Mehta AK; Childers WS; Lakdawala A; Pingali SV; Thiyagarajan P; Lynn DG
    J Am Chem Soc; 2008 Dec; 130(50):16867-9. PubMed ID: 19053426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic solvent mediated self-association of an amyloid forming peptide from beta2-microglobulin: an atomic force microscopy study.
    Chaudhary N; Singh S; Nagaraj R
    Biopolymers; 2008; 90(6):783-91. PubMed ID: 18798577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of PEG crystallization on the self-assembly of PEG/peptide copolymers containing amyloid peptide fragments.
    Hamley IW; Krysmann MJ
    Langmuir; 2008 Aug; 24(15):8210-4. PubMed ID: 18598063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies.
    Yan X; Cui Y; He Q; Wang K; Li J; Mu W; Wang B; Ou-Yang ZC
    Chemistry; 2008; 14(19):5974-80. PubMed ID: 18478616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.