BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 18572910)

  • 1. Unusual concerted Lewis acid-Lewis base mechanism for hydrogen activation by a phosphine-borane compound.
    Guo Y; Li S
    Inorg Chem; 2008 Jul; 47(14):6212-9. PubMed ID: 18572910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible, metal-free hydrogen activation.
    Welch GC; San Juan RR; Masuda JD; Stephan DW
    Science; 2006 Nov; 314(5802):1124-6. PubMed ID: 17110572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of B(C6F5)3-catalyzed direct hydrogenation of imines: inherent and thermally induced frustration.
    Rokob TA; Hamza A; Stirling A; Pápai I
    J Am Chem Soc; 2009 Feb; 131(5):2029-36. PubMed ID: 19159259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insight on the hydrogenation of conjugated alkenes with h(2) catalyzed by early main-group metal catalysts.
    Zeng G; Li S
    Inorg Chem; 2010 Apr; 49(7):3361-9. PubMed ID: 20196551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the origin of reversible hydrogen activation by phosphine-boranes.
    Rajeev R; Sunoj RB
    Chemistry; 2009 Nov; 15(46):12846-55. PubMed ID: 19839016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The B-H...H-P dihydrogen bonding in ion pair complexes [(CF(3))(3)BH(-)][HPH(3-n)(Me)(n)(+)] (n = 0-3) and its implication in H(2) elimination and activation reactions.
    Gao S; Wu W; Mo Y
    J Phys Chem A; 2009 Jul; 113(28):8108-17. PubMed ID: 19555090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis sigma-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release.
    Alcaraz G; Grellier M; Sabo-Etienne S
    Acc Chem Res; 2009 Oct; 42(10):1640-9. PubMed ID: 19586012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer.
    Yang X; Hall MB
    J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Design of Frustrated Lewis Pairs as a Strategy for Catalytic Hydrogen Activation and Hydrogenation Catalyst.
    Dagnaw WM; Mohammed AM
    ACS Omega; 2023 Mar; 8(9):8488-8496. PubMed ID: 36910957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton-transfer and H2-elimination reactions of trimethylamine alane: role of dihydrogen bonding and Lewis acid-base interactions.
    Filippov OA; Tsupreva VN; Golubinskaya LM; Krylova AI; Bregadze VI; Lledos A; Epstein LM; Shubina ES
    Inorg Chem; 2009 Apr; 48(8):3667-78. PubMed ID: 19281257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study of the reaction of C6F6 with [IrMe(PEt3)3]: identification of a phosphine-assisted C-F activation pathway via a metallophosphorane intermediate.
    Erhardt S; Macgregor SA
    J Am Chem Soc; 2008 Nov; 130(46):15490-8. PubMed ID: 18950169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of the aminolysis of anhydrides: effect of the catalysis to the reaction of succinic anhydride with methylamine in gas phase and nonpolar solution.
    Petrova T; Okovytyy S; Gorb L; Leszczynski J
    J Phys Chem A; 2008 Jun; 112(23):5224-35. PubMed ID: 18491887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Ru-H2 heterolytic activation and intramolecular proton transfer assisted by basic N-centers in the ligands.
    Jalón FA; Manzano BR; Caballero A; Carrión MC; Santos L; Espino G; Moreno M
    J Am Chem Soc; 2005 Nov; 127(44):15364-5. PubMed ID: 16262388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insights into the full hydrogenation of 2,6-substituted pyridine catalyzed by the Lewis acid C6F5(CH2)2B(C6F5)2.
    Zhao J; Wang G; Li S
    Dalton Trans; 2015 May; 44(19):9200-8. PubMed ID: 25905499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on the Diels-Alder reaction between 2-methylacrolein and cyclopentadiene catalyzed by a cationic oxazaborolidine Lewis acid.
    Pi Z; Li S
    J Phys Chem A; 2006 Jul; 110(29):9225-30. PubMed ID: 16854037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unexpected electronic process of H2 activation by a new nickel borane complex: comparison with the usual homolytic and heterolytic activations.
    Zeng G; Sakaki S
    Inorg Chem; 2013 Mar; 52(6):2844-53. PubMed ID: 23464622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center.
    Frey GD; Lavallo V; Donnadieu B; Schoeller WW; Bertrand G
    Science; 2007 Apr; 316(5823):439-41. PubMed ID: 17446400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio dynamics trajectory study of the heterolytic cleavage of H2 by a Lewis acid [B(C6F5)3] and a Lewis base [P(tBu)3].
    Pu M; Privalov T
    J Chem Phys; 2013 Apr; 138(15):154305. PubMed ID: 23614421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thermodynamic and kinetic study of the heterolytic activation of hydrogen by frustrated borane-amine Lewis pairs.
    Karkamkar A; Parab K; Camaioni DM; Neiner D; Cho H; Nielsen TK; Autrey T
    Dalton Trans; 2013 Jan; 42(3):615-9. PubMed ID: 22996636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the stability of the M-H-B bond in borane sigma complexes [M(CO)5(eta1-BH2R.L)] and [CpMn(CO)2(eta1-BH2R.L)] (M=Cr, W; L=tertiary amine or phosphine): substituent and Lewis base effects.
    Kawano Y; Yamaguchi K; Miyake SY; Kakizawa T; Shimoi M
    Chemistry; 2007; 13(24):6920-31. PubMed ID: 17525921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.