BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 18572951)

  • 1. Roasting and aroma formation: effect of initial moisture content and steam treatment.
    Baggenstoss J; Poisson L; Kaegi R; Perren R; Escher F
    J Agric Food Chem; 2008 Jul; 56(14):5847-51. PubMed ID: 18572951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coffee roasting and aroma formation: application of different time-temperature conditions.
    Baggenstoss J; Poisson L; Kaegi R; Perren R; Escher F
    J Agric Food Chem; 2008 Jul; 56(14):5836-46. PubMed ID: 18572953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of water quench cooling on degassing and aroma stability of roasted coffee.
    Baggenstoss J; Poisson L; Luethi R; Perren R; Escher F
    J Agric Food Chem; 2007 Aug; 55(16):6685-91. PubMed ID: 17616133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS.
    Caporaso N; Whitworth MB; Cui C; Fisk ID
    Food Res Int; 2018 Jun; 108():628-640. PubMed ID: 29735099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of acrylamide and polycyclic aromatic hydrocarbons contents in Robusta coffee beans roasted by hot air and superheated steam.
    Rattanarat P; Chindapan N; Devahastin S
    Food Chem; 2021 Mar; 341(Pt 1):128266. PubMed ID: 33035858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of roasting conditions on the polycyclic aromatic hydrocarbon content in ground Arabica coffee and coffee brew.
    Houessou JK; Maloug S; Leveque AS; Delteil C; Heyd B; Camel V
    J Agric Food Chem; 2007 Nov; 55(23):9719-26. PubMed ID: 17941690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Furan levels in coffee as influenced by species, roast degree, and brewing procedures.
    Arisseto AP; Vicente E; Ueno MS; Tfouni SA; Toledo MC
    J Agric Food Chem; 2011 Apr; 59(7):3118-24. PubMed ID: 21388135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A further tool to monitor the coffee roasting process: aroma composition and chemical indices.
    Ruosi MR; Cordero C; Cagliero C; Rubiolo P; Bicchi C; Sgorbini B; Liberto E
    J Agric Food Chem; 2012 Nov; 60(45):11283-91. PubMed ID: 23083340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting.
    Dybkowska E; Sadowska A; Rakowska R; Dębowska M; Świderski F; Świąder K
    Rocz Panstw Zakl Hig; 2017; 68(4):347-353. PubMed ID: 29265388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of roasting levels on ochratoxin a content in coffee.
    Romani S; Pinnavaia GG; Dalla Rosa M
    J Agric Food Chem; 2003 Aug; 51(17):5168-71. PubMed ID: 12903986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East.
    Abdelwareth A; Zayed A; Farag MA
    Food Chem; 2021 Jul; 349():129162. PubMed ID: 33550017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aroma recovery from roasted coffee by wet grinding.
    Baggenstoss J; Thomann D; Perren R; Escher F
    J Food Sci; 2010; 75(9):C697-702. PubMed ID: 21535580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of odor-active 3-mercapto-3-methylbutyl acetate in volatile fraction of roasted coffee brew isolated by steam distillation under reduced pressure.
    Kumazawa K; Masuda H
    J Agric Food Chem; 2003 May; 51(10):3079-82. PubMed ID: 12720395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the formation of some polycyclic aromatic hydrocarbons during the roasting of Arabica coffee samples.
    Houessou JK; Goujot D; Heyd B; Camel V
    J Agric Food Chem; 2008 May; 56(10):3648-56. PubMed ID: 18433138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Validation of the In-Bean Approach in Coffee Roasting.
    Poisson L; Pittet J; Schaerer A; Mestdagh F; Davidek T
    J Agric Food Chem; 2020 Apr; 68(17):4732-4742. PubMed ID: 31692347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line process monitoring of coffee roasting by resonant laser ionisation time-of-flight mass spectrometry: bridging the gap from industrial batch roasting to flavour formation inside an individual coffee bean.
    Hertz-Schünemann R; Dorfner R; Yeretzian C; Streibel T; Zimmermann R
    J Mass Spectrom; 2013 Dec; 48(12):1253-65. PubMed ID: 24338878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of raw coffee for thiol binding site precursors using "in bean" model roasting experiments.
    Müller C; Hofmann T
    J Agric Food Chem; 2005 Apr; 53(7):2623-9. PubMed ID: 15796603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of roasting on the total polyphenols and antioxidant activity of coffee.
    Bobková A; Hudáček M; Jakabová S; Belej Ľ; Capcarová M; Čurlej J; Bobko M; Árvay J; Jakab I; Čapla J; Demianová A
    J Environ Sci Health B; 2020; 55(5):495-500. PubMed ID: 32067557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on acrylamide levels in roasting, storage and brewing of coffee.
    Lantz I; Ternité R; Wilkens J; Hoenicke K; Guenther H; van der Stegen GH
    Mol Nutr Food Res; 2006 Nov; 50(11):1039-46. PubMed ID: 17054100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR-ATR analysis of brewed coffee: effect of roasting conditions.
    Lyman DJ; Benck R; Dell S; Merle S; Murray-Wijelath J
    J Agric Food Chem; 2003 May; 51(11):3268-72. PubMed ID: 12744653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.