These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 18573074)

  • 1. Metal binding affinity and selectivity in metalloproteins: insights from computational studies.
    Dudev T; Lim C
    Annu Rev Biophys; 2008; 37():97-116. PubMed ID: 18573074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic properties and desolvation penalties of metal ions plus protein electrostatics dictate the metal binding affinity and selectivity in the copper efflux regulator.
    Rao L; Cui Q; Xu X
    J Am Chem Soc; 2010 Dec; 132(51):18092-102. PubMed ID: 21128636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into intramolecular Trp and His side-chain orientation and stereospecific π interactions surrounding metal centers: an investigation using protein metal-site mimicry in solution.
    Yang CM; Zhang J
    Chemistry; 2010 Sep; 16(35):10854-65. PubMed ID: 20669189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of metalloproteins.
    Parmar AS; Pike D; Nanda V
    Methods Mol Biol; 2014; 1216():233-49. PubMed ID: 25213419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations.
    Dal Peraro M; Spiegel K; Lamoureux G; De Vivo M; DeGrado WF; Klein ML
    J Struct Biol; 2007 Mar; 157(3):444-53. PubMed ID: 17188512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-binding affinity and selectivity of nonstandard natural amino acid residues from DFT/CDM calculations.
    Dudev T; Lim C
    J Phys Chem B; 2009 Aug; 113(34):11754-64. PubMed ID: 19642664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DFT/CDM Study of metal-carboxylate interactions in metalloproteins: factors governing the maximum number of metal-bound carboxylates.
    Dudev T; Lim C
    J Am Chem Soc; 2006 Feb; 128(5):1553-61. PubMed ID: 16448126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR structures of paramagnetic metalloproteins.
    Arnesano F; Banci L; Piccioli M
    Q Rev Biophys; 2005 May; 38(2):167-219. PubMed ID: 16674835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How simple is too simple? Computational perspective on importance of second-shell environment for metal-ion selectivity.
    Gutten O; Rulíšek L
    Phys Chem Chem Phys; 2015 Jun; 17(22):14393-404. PubMed ID: 25785686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function-based assessment of structural similarity measurements using metal co-factor orientation.
    Senn S; Nanda V; Falkowski P; Bromberg Y
    Proteins; 2014 Apr; 82(4):648-56. PubMed ID: 24127252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors.
    Lu Y
    Curr Opin Chem Biol; 2005 Apr; 9(2):118-26. PubMed ID: 15811795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Theoretical Evaluations Can Generate Guidelines for Designing/Engineering Metalloproteins with Desired Metal Affinity and Selectivity.
    Dudev T
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.
    Amrein B; Schmid M; Collet G; Cuniasse P; Gilardoni F; Seebeck FP; Ward TR
    Metallomics; 2012 Apr; 4(4):379-88. PubMed ID: 22392271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure based design of functional metal/protein hybrids.
    Ueno T; Yokoi N; Abe S; Watanabe Y
    J Inorg Biochem; 2007 Nov; 101(11-12):1667-75. PubMed ID: 17675160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mononuclear versus binuclear metal-binding sites: metal-binding affinity and selectivity from PDB survey and DFT/CDM calculations.
    Yang TY; Dudev T; Lim C
    J Am Chem Soc; 2008 Mar; 130(12):3844-52. PubMed ID: 18303888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.