These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18573322)

  • 1. Evaluation of dynamic image analysis for characterizing pharmaceutical excipient particles.
    Yu W; Hancock BC
    Int J Pharm; 2008 Sep; 361(1-2):150-7. PubMed ID: 18573322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.
    Alyami H; Dahmash E; Bowen J; Mohammed AR
    PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation into the impact of sub-populations of agglomerates on the particle size distribution and flow properties of conventional microcrystalline cellulose grades.
    Gamble JF; Chiu WS; Tobyn M
    Pharm Dev Technol; 2011 Oct; 16(5):542-8. PubMed ID: 20565228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose.
    Celik M; Ong JT; Chowhan ZT; Samuel GJ
    Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.
    Limwong V; Sutanthavibul N; Kulvanich P
    AAPS PharmSciTech; 2004 Mar; 5(2):e30. PubMed ID: 15760088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spherical crystallization of drugs.
    Kovačič B; Vrečer F; Planinšek O
    Acta Pharm; 2012 Mar; 62(1):1-14. PubMed ID: 22472445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micrometer-scale particle sizing by laser diffraction: critical impact of the imaginary component of refractive index.
    Beekman A; Shan D; Ali A; Dai W; Ward-Smith S; Goldenberg M
    Pharm Res; 2005 Apr; 22(4):518-22. PubMed ID: 15846458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations.
    Marriott C; MacRitchie HB; Zeng XM; Martin GP
    Int J Pharm; 2006 Dec; 326(1-2):39-49. PubMed ID: 16942848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.
    Horio T; Yasuda M; Matsusaka S
    Int J Pharm; 2014 Oct; 473(1-2):572-8. PubMed ID: 25079435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of coning phenomena for irregular particles in paddle dissolution test.
    Higuchi M; Nishida S; Yoshihashi Y; Tarada K; Sugano K
    Eur J Pharm Sci; 2015 Aug; 76():213-6. PubMed ID: 25998150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entrainment of lactose inhalation powders: a study using laser diffraction.
    Watling CP; Elliott JA; Cameron RE
    Eur J Pharm Sci; 2010 Jul; 40(4):352-8. PubMed ID: 20417708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of particle kinematics in spheronization via particle image velocimetry.
    Koester M; Thommes M
    Eur J Pharm Biopharm; 2013 Feb; 83(2):307-14. PubMed ID: 23000404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of particle size analysis techniques for measurement of the attrition that occurs during vacuum agitated powder drying of needle-shaped particles.
    Hamilton P; Littlejohn D; Nordon A; Sefcik J; Slavin P
    Analyst; 2012 Jan; 137(1):118-25. PubMed ID: 22068605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose.
    Kaerger JS; Edge S; Price R
    Eur J Pharm Sci; 2004 Jun; 22(2-3):173-9. PubMed ID: 15158902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy.
    Fechner PM; Wartewig S; Füting M; Heilmann A; Neubert RH; Kleinebudde P
    AAPS PharmSci; 2003 Nov; 5(4):E31. PubMed ID: 15198519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A PAT-based qualification of pharmaceutical excipients produced by batch or continuous processing.
    Hertrampf A; Müller H; Menezes JC; Herdling T
    J Pharm Biomed Anal; 2015 Oct; 114():208-15. PubMed ID: 26072012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of relative humidity on the physical properties of two melibiose monohydrate batches with differing particle size distributions and surface properties.
    Heljo VP; Sainio J; Shevchenko A; Kivikero N; Lakio S; Juppo AM
    J Pharm Sci; 2013 Jan; 102(1):195-203. PubMed ID: 23150464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion and redistribution of salmeterol xinafoate particles in sugar-based mixtures for inhalation.
    Adi H; Larson I; Stewart PJ
    Int J Pharm; 2007 Jun; 337(1-2):229-38. PubMed ID: 17303354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow characterization of a pharmaceutical excipient using the shear cell method.
    Salústio PJ; Inácio C; Nunes T; Sousa E Silva JP; Costa PC
    Pharm Dev Technol; 2020 Feb; 25(2):237-244. PubMed ID: 31718375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Quantitative X-ray Microscopy for Assessment of API and Excipient Microstructure Evolution in Solid Dosage Processing.
    Zhu A; Mao C; Luner PE; Lomeo J; So C; Marchal S; Zhang S
    AAPS PharmSciTech; 2022 Apr; 23(5):117. PubMed ID: 35441297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.