BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18573497)

  • 1. An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor.
    Fan Y; Xu Z; Jiang W; Deng X; Wang K; Sun A
    J Biomech; 2008 Aug; 41(11):2498-505. PubMed ID: 18573497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of blood flow in the distal end of an axis-deviated arterial bypass model.
    Sun A; Fan Y; Deng X
    Biorheology; 2009; 46(2):83-92. PubMed ID: 19458412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swirling flow pattern in a non-planar model of an interposition vein cuff anastomosis.
    How TV; Fisher RK; Brennan JA; Harris PL
    Med Eng Phys; 2006 Jan; 28(1):27-35. PubMed ID: 15921948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsteady simulation of distal blood flow in an end-to-side anastomosed coronary bypass graft with stenosis.
    Najarian S; Dargahi J; Firouzi F; Afsari J
    Biomed Mater Eng; 2006; 16(5):337-47. PubMed ID: 17075169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of numerical simulation with PIV measurements for two anastomosis models.
    Zhang JM; Chua LP; Ghista DN; Zhou TM; Tan YS
    Med Eng Phys; 2008 Mar; 30(2):226-47. PubMed ID: 17466565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of pulsatile flow in an end-to-side anastomosis model.
    Shaik E; Hoffmann KA; Dietiker JF
    Mol Cell Biomech; 2007 Mar; 4(1):41-53. PubMed ID: 17879770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow patterns and preferred sites of intimal thickening in bypass-grafted arteries .
    Sunamura M; Ishibashi H; Karino T
    Int Angiol; 2012 Apr; 31(2):187-97. PubMed ID: 22466986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PIV-validated numerical modeling of pulsatile flows in distal coronary end-to-side anastomoses.
    Xiong FL; Chong CK
    J Biomech; 2007; 40(13):2872-81. PubMed ID: 17466995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
    Chen J; Lu XY; Wang W
    J Biomech; 2006; 39(11):1983-95. PubMed ID: 16055134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis.
    O'Callaghan S; Walsh M; McGloughlin T
    Med Eng Phys; 2006 Jan; 28(1):70-4. PubMed ID: 15905113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parametric numerical investigation on haemodynamics in distal coronary anastomoses.
    Xiong FL; Chong CK
    Med Eng Phys; 2008 Apr; 30(3):311-20. PubMed ID: 17616426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry.
    Heise M; Schmidt S; Krüger U; Rückert R; Rösler S; Neuhaus P; Settmacher U
    J Biomech; 2004 Jul; 37(7):1043-51. PubMed ID: 15165874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering end-to-side anastomosis junction hemodynamics: the effects of flow-splitting.
    O'Brien T; Walsh M; McGloughlin T
    Med Eng Phys; 2006 Sep; 28(7):727-33. PubMed ID: 16337824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.