These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18573556)

  • 21. Modelling of growth of aflatoxigenic A. flavus isolates from red chilli powder as a function of water availability.
    Marín S; Colom C; Sanchis V; Ramos AJ
    Int J Food Microbiol; 2009 Jan; 128(3):491-6. PubMed ID: 19046614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological implications from an autonomous version of Baranyi and Roberts growth model.
    Vadasz P; Vadasz AS
    Int J Food Microbiol; 2007 Mar; 114(3):357-65. PubMed ID: 17140684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature.
    Nuin M; Alfaro B; Cruz Z; Argarate N; George S; Le Marc Y; Olley J; Pin C
    Int J Food Microbiol; 2008 Oct; 127(3):193-9. PubMed ID: 18692267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the thermal inactivation of bacteria in a solid matrix: simulation studies on the relative effects of microbial thermal resistance parameters and process conditions.
    Mackey BM; Kelly AF; Colvin JA; Robbins PT; Fryer PJ
    Int J Food Microbiol; 2006 Apr; 107(3):295-303. PubMed ID: 16406135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards a novel class of predictive microbial growth models.
    Van Impe JF; Poschet F; Geeraerd AH; Vereecken KM
    Int J Food Microbiol; 2005 Apr; 100(1-3):97-105. PubMed ID: 15854696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation model equations and their associated parameter values obtained under static acid stress conditions cannot be used directly for predicting inactivation under dynamic conditions.
    Janssen M; Verhulst A; Valdramidis V; Devlieghere F; Van Impe JF; Geeraerd AH
    Int J Food Microbiol; 2008 Nov; 128(1):136-45. PubMed ID: 18675486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial Responses Viewer (MRV): a new ComBase-derived database of microbial responses to food environments.
    Koseki S
    Int J Food Microbiol; 2009 Aug; 134(1-2):75-82. PubMed ID: 19181410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modelling for predicting the growth of Pseudomonas spp. in poultry under variable temperature conditions.
    Gospavic R; Kreyenschmidt J; Bruckner S; Popov V; Haque N
    Int J Food Microbiol; 2008 Oct; 127(3):290-7. PubMed ID: 18775580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simplified approach for modelling the bacterial growth/no growth boundary.
    Polese P; Del Torre M; Spaziani M; Stecchini ML
    Food Microbiol; 2011 May; 28(3):384-91. PubMed ID: 21356442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of poultry decontaminants concentration on growth kinetics for pathogenic and spoilage bacteria.
    del Río E; González de Caso B; Prieto M; Alonso-Calleja C; Capita R
    Food Microbiol; 2008 Oct; 25(7):888-94. PubMed ID: 18721678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive modeling of microorganisms: LAG and LIP in monotonic growth.
    Vadasz P; Vadasz AS
    Int J Food Microbiol; 2005 Jul; 102(3):257-75. PubMed ID: 16014294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive modelling of growth and measurement of enzymatic synthesis and activity by a cocktail of Brochothrix thermosphacta.
    Braun P; Sutherland JP
    Int J Food Microbiol; 2004 Sep; 95(2):169-75. PubMed ID: 15282129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a DNA macroarray for monitoring microbial population dynamics during sugar thick juice storage.
    Justé A; Frans I; Klingeberg M; Lievens B; Michiels CW; Marsh TL; Willems KA
    Commun Agric Appl Biol Sci; 2008; 73(1):259-64. PubMed ID: 18831287
    [No Abstract]   [Full Text] [Related]  

  • 35. Physiological state of single cells of Listeria innocua in organic acids.
    George SM; Metris A; Stringer SC
    Int J Food Microbiol; 2008 May; 124(2):204-10. PubMed ID: 18456356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Weibullian model for microbial injury and mortality.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2007 Nov; 119(3):319-28. PubMed ID: 17904675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Poona on whole cantaloupe by chlorine dioxide gas.
    Mahmoud BS; Vaidya NA; Corvalan CM; Linton RH
    Food Microbiol; 2008 Oct; 25(7):857-65. PubMed ID: 18721673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the growth/no growth boundary of spoilage microorganisms in foods as an alternative method to preserve products without using chemical preservatives.
    Dang TD; Mertens L; Vermeulen A; Geeraerd AH; Van Impe J; Devlieghere F
    Commun Agric Appl Biol Sci; 2008; 73(1):67-70. PubMed ID: 18831247
    [No Abstract]   [Full Text] [Related]  

  • 39. Accounting for inherent variability of growth in microbial risk assessment.
    Marks HM; Coleman ME
    Int J Food Microbiol; 2005 Apr; 100(1-3):275-87. PubMed ID: 15854712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On modeling and simulating transitions between microbial growth and inactivation or vice versa.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2006 Apr; 108(1):22-35. PubMed ID: 16403587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.