These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18573680)

  • 1. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase.
    Zhang W; Jones VC; Scherman MS; Mahapatra S; Crick D; Bhamidi S; Xin Y; McNeil MR; Ma Y
    Int J Biochem Cell Biol; 2008; 40(11):2560-71. PubMed ID: 18573680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties of Mycobacterium tuberculosis bifunctional GlmU.
    Zhou Y; Xin Y; Sha S; Ma Y
    Arch Microbiol; 2011 Oct; 193(10):751-7. PubMed ID: 21594607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU.
    Rani C; Mehra R; Sharma R; Chib R; Wazir P; Nargotra A; Khan IA
    Tuberculosis (Edinb); 2015 Dec; 95(6):664-677. PubMed ID: 26318557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique C-terminal extension and interactome of Mycobacterium tuberculosis GlmU impacts it's in vivo function and the survival of pathogen.
    Agarwal M; Soni V; Kumar S; Singha B; Nandicoori VK
    Biochem J; 2021 Jun; 478(11):2081-2099. PubMed ID: 33955473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis.
    Mengin-Lecreulx D; van Heijenoort J
    J Bacteriol; 1994 Sep; 176(18):5788-95. PubMed ID: 8083170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bifunctional protein GlmU is a key factor in biofilm formation induced by alkylating stress in Mycobacterium smegmatis.
    Di Somma A; Caterino M; Soni V; Agarwal M; di Pasquale P; Zanetti S; Molicotti P; Cannas S; Nandicoori VK; Duilio A
    Res Microbiol; 2019; 170(4-5):171-181. PubMed ID: 30953691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity.
    Parikh A; Verma SK; Khan S; Prakash B; Nandicoori VK
    J Mol Biol; 2009 Feb; 386(2):451-64. PubMed ID: 19121323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate-bound crystal structures reveal features unique to Mycobacterium tuberculosis N-acetyl-glucosamine 1-phosphate uridyltransferase and a catalytic mechanism for acetyl transfer.
    Jagtap PK; Soni V; Vithani N; Jhingan GD; Bais VS; Nandicoori VK; Prakash B
    J Biol Chem; 2012 Nov; 287(47):39524-37. PubMed ID: 22969087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of amino acids involved in catalytic process of M. tuberculosis GlmU acetyltransferase.
    Zhou Y; Yu W; Zheng Q; Xin Y; Ma Y
    Glycoconj J; 2012 Aug; 29(5-6):297-303. PubMed ID: 22669463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU.
    Li Y; Zhou Y; Ma Y; Li X
    Carbohydr Res; 2011 Sep; 346(13):1714-20. PubMed ID: 21704310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of GlmU from Mycobacterium tuberculosis.
    Zhang Z; Bulloch EM; Bunker RD; Baker EN; Squire CJ
    Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):275-83. PubMed ID: 19237750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mechanism of Acetyl Transfer Catalyzed by Mycobacterium tuberculosis GlmU.
    Craggs PD; Mouilleron S; Rejzek M; de Chiara C; Young RJ; Field RA; Argyrou A; de Carvalho LPS
    Biochemistry; 2018 Jun; 57(24):3387-3401. PubMed ID: 29684272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli.
    Gehring AM; Lees WJ; Mindiola DJ; Walsh CT; Brown ED
    Biochemistry; 1996 Jan; 35(2):579-85. PubMed ID: 8555230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmU).
    Tran AT; Wen D; West NP; Baker EN; Britton WJ; Payne RJ
    Org Biomol Chem; 2013 Dec; 11(46):8113-26. PubMed ID: 24158720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group.
    Verma SK; Jaiswal M; Kumar N; Parikh A; Nandicoori VK; Prakash B
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 May; 65(Pt 5):435-9. PubMed ID: 19407371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 A resolution and in complex with UDP-N-acetylglucosamine and Mg(2+) at 1.96 A resolution.
    Kostrewa D; D'Arcy A; Takacs B; Kamber M
    J Mol Biol; 2001 Jan; 305(2):279-89. PubMed ID: 11124906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis.
    Jin Y; Xin Y; Zhang W; Ma Y
    FEMS Microbiol Lett; 2010 Sep; 310(1):54-61. PubMed ID: 20637039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth.
    Pompeo F; Bourne Y; van Heijenoort J; Fassy F; Mengin-Lecreulx D
    J Biol Chem; 2001 Feb; 276(6):3833-9. PubMed ID: 11084021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UDP-GlcNAc pathway: Potential target for inhibitor discovery against M. tuberculosis.
    Rani C; Khan IA
    Eur J Pharm Sci; 2016 Feb; 83():62-70. PubMed ID: 26690048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of M. tuberculosis Rv3441c and M. smegmatis MSMEG_1556 and essentiality of M. smegmatis MSMEG_1556.
    Li S; Kang J; Yu W; Zhou Y; Zhang W; Xin Y; Ma Y
    PLoS One; 2012; 7(8):e42769. PubMed ID: 22905172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.