These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18573757)

  • 1. An efficient approach to converting three-dimensional image data into highly accurate computational models.
    Young PG; Beresford-West TB; Coward SR; Notarberardino B; Walker B; Abdul-Aziz A
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1878):3155-73. PubMed ID: 18573757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational biomechanical modelling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing.
    Wang ZL; Teo JC; Chui CK; Ong SH; Yan CH; Wang SC; Wong HK; Teoh SH
    Comput Methods Programs Biomed; 2005 Oct; 80(1):25-35. PubMed ID: 16043256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.
    Lee WH; Kim TS; Cho MH; Ahn YB; Lee SY
    Phys Med Biol; 2006 Dec; 51(23):6173-86. PubMed ID: 17110778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth surface meshing for automated finite element model generation from 3D image data.
    Boyd SK; Müller R
    J Biomech; 2006; 39(7):1287-95. PubMed ID: 15922348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.
    Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M
    Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Developing a finite element model of human head with true anatomic structure mandible].
    Ma C; Zhang H; Du H; Huang S; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):53-6. PubMed ID: 15762115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional finite element modeling of ligaments: technical aspects.
    Weiss JA; Gardiner JC; Ellis BJ; Lujan TJ; Phatak NS
    Med Eng Phys; 2005 Dec; 27(10):845-61. PubMed ID: 16085446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.
    Lamata P; Niederer S; Nordsletten D; Barber DC; Roy I; Hose DR; Smith N
    Med Image Anal; 2011 Dec; 15(6):801-13. PubMed ID: 21788150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data.
    Magne P
    Dent Mater; 2007 May; 23(5):539-48. PubMed ID: 16730058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous meshing and biomechanical modeling of human spine.
    Teo JC; Chui CK; Wang ZL; Ong SH; Yan CH; Wang SC; Wong HK; Teoh SH
    Med Eng Phys; 2007 Mar; 29(2):277-90. PubMed ID: 16679044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography.
    Antiga L; Ene-Iordache B; Remuzzi A
    IEEE Trans Med Imaging; 2003 May; 22(5):674-84. PubMed ID: 12846436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element (FE) modeling of the mandible: from geometric model to tetrahedral volumetric mesh.
    Zhao L; Han H; Patel PK; Widera GE; Harris GF
    Stud Health Technol Inform; 2002; 85():593-6. PubMed ID: 15458158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation.
    Chen M; Mogul DJ
    J Neurosci Methods; 2009 Apr; 179(1):111-20. PubMed ID: 19428517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-based variational meshing.
    Goksel O; Salcudean SE
    IEEE Trans Med Imaging; 2011 Jan; 30(1):11-21. PubMed ID: 20601308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward integration of geometric morphometrics and computational biomechanics: new methods for 3D virtual reconstruction and quantitative analysis of Finite Element Models.
    Parr WC; Wroe S; Chamoli U; Richards HS; McCurry MR; Clausen PD; McHenry C
    J Theor Biol; 2012 May; 301():1-14. PubMed ID: 22342680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head.
    Vonach M; Marson B; Yun M; Cardoso J; Modat M; Ourselin S; Holder D
    Physiol Meas; 2012 May; 33(5):801-16. PubMed ID: 22531116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of soft tissue modelling to image-guided surgery.
    Carter TJ; Sermesant M; Cash DM; Barratt DC; Tanner C; Hawkes DJ
    Med Eng Phys; 2005 Dec; 27(10):893-909. PubMed ID: 16271490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.