These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 18574179)
1. In situ accumulation of copper, chromium, nickel, and zinc in soils used for long-term waste water reclamation. Lin C; Negev I; Eshel G; Banin A J Environ Qual; 2008; 37(4):1477-87. PubMed ID: 18574179 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal retention and partitioning in a large-scale soil-aquifer treatment (SAT) system used for wastewater reclamation. Lin C; Shacahr Y; Banin A Chemosphere; 2004 Dec; 57(9):1047-58. PubMed ID: 15504463 [TBL] [Abstract][Full Text] [Related]
3. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
4. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Jalali M; Khanlari ZV Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454 [TBL] [Abstract][Full Text] [Related]
5. Transversal immission patterns and leachability of heavy metals in road side soils. Hjortenkrans DS; Bergbäck BG; Häggerud AV J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541 [TBL] [Abstract][Full Text] [Related]
6. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Du Laing G; Vanthuyne DR; Vandecasteele B; Tack FM; Verloo MG Environ Pollut; 2007 Jun; 147(3):615-25. PubMed ID: 17134804 [TBL] [Abstract][Full Text] [Related]
7. Recovery and distribution of biosolids-derived trace metals in a clay loam soil. Sukkariyah BF; Evanylo G; Zelazny L; Chaney RL J Environ Qual; 2005; 34(5):1843-50. PubMed ID: 16151236 [TBL] [Abstract][Full Text] [Related]
8. Release behavior of copper and zinc from sandy soils. Zhang MK; Xia YP J Environ Sci (China); 2005; 17(4):566-71. PubMed ID: 16158580 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences. Covelo EF; Vega FA; Andrade ML J Hazard Mater; 2007 Aug; 147(3):852-61. PubMed ID: 17346879 [TBL] [Abstract][Full Text] [Related]
10. Metals in particle-size fractions of the soils of five European cities. Ajmone-Marsan F; Biasioli M; Kralj T; Grcman H; Davidson CM; Hursthouse AS; Madrid L; Rodrigues S Environ Pollut; 2008 Mar; 152(1):73-81. PubMed ID: 17602808 [TBL] [Abstract][Full Text] [Related]
11. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Shi G; Chen Z; Xu S; Zhang J; Wang L; Bi C; Teng J Environ Pollut; 2008 Nov; 156(2):251-60. PubMed ID: 18703261 [TBL] [Abstract][Full Text] [Related]
12. Effect of nine years of animal waste deposition on profile distribution of heavy metals in Abeokuta, south-western Nigeria and its implication for environmental quality. Azeez JO; Adekunle IO; Atiku OO; Akande KB; Jamiu-Azeez SO Waste Manag; 2009 Sep; 29(9):2582-6. PubMed ID: 19525105 [TBL] [Abstract][Full Text] [Related]
13. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035 [TBL] [Abstract][Full Text] [Related]
14. Phosphorous retardation and breakthrough into well water in a soil-aquifer treatment (SAT) system used for large-scale wastewater reclamation. Lin C; Banin A Water Res; 2006 May; 40(8):1507-18. PubMed ID: 16616770 [TBL] [Abstract][Full Text] [Related]
15. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach. Kierczak J; Neel C; Aleksander-Kwaterczak U; Helios-Rybicka E; Bril H; Puziewicz J Chemosphere; 2008 Oct; 73(5):776-84. PubMed ID: 18649917 [TBL] [Abstract][Full Text] [Related]
16. Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt. Du Laing G; Vandecasteele B; De Grauwe P; Moors W; Lesage E; Meers E; Tack FM; Verloo MG J Environ Monit; 2007 May; 9(5):449-55. PubMed ID: 17492090 [TBL] [Abstract][Full Text] [Related]
17. Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla. Madrid F; Díaz-Barrientos E; Madrid L Environ Pollut; 2008 Dec; 156(3):605-10. PubMed ID: 18653266 [TBL] [Abstract][Full Text] [Related]
18. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
19. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Aziz HA; Adlan MN; Ariffin KS Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]