These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18574817)

  • 1. On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes.
    Zale SE; Klibanov AM
    Biotechnol Bioeng; 1983 Sep; 25(9):2221-30. PubMed ID: 18574817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Chlorobutanol induces unusual reversible and irreversible thermal unfolding of ribonuclease A: thermodynamic, kinetic, and conformational characterization.
    Mehta R; Kundu A; Kishore N
    Int J Biol Macromol; 2004 Apr; 34(1-2):13-20. PubMed ID: 15178004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Regulation of thermal stability of enzymes by changing the composition of media. Native and modified alpha-chymotrypsin].
    Levitskiĭ VIu; Melik-Nubarov NS; Slepnev VI; Shikshnis VA; Mozhaev VV
    Mol Biol (Mosk); 1990; 24(5):1246-54. PubMed ID: 2290421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Unusual (saw-like) temperature dependence of the rate of irreversible thermoinactivation of enzymes].
    Shikshnis VA; Galkantaĭte NZ; Melik-Nubarov NS; Levitskiĭ VIu; Slepnev VI; Mozhaev VV
    Biokhimiia; 1990 Aug; 55(8):1347-55. PubMed ID: 2288981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium and kinetic studies on reversible and irreversible denaturation of micrococcal nuclease.
    Nohara D; Yamada T; Watanabe A; Sakai T
    Biotechnol Bioeng; 1994 Jul; 44(3):276-82. PubMed ID: 18618743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme thermoinactivation in anhydrous organic solvents.
    Volkin DB; Staubli A; Langer R; Klibanov AM
    Biotechnol Bioeng; 1991 Apr; 37(9):843-53. PubMed ID: 18600684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of the palm tree Roystonea regia peroxidase stability.
    Zamorano LS; Pina DG; Arellano JB; Bursakov SA; Zhadan AP; Calvete JJ; Sanz L; Nielsen PR; Villar E; Gavel O; Roig MG; Watanabe L; Polikarpov I; Shnyrov VL
    Biochimie; 2008; 90(11-12):1737-49. PubMed ID: 18725267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High stability to irreversible inactivation at elevated temperatures of enzymes covalently modified by hydrophilic reagents: alpha-Chymotrypsin.
    Mozhaev VV; Melik-Nubarov NS; Levitsky VY; Siksnis VA; Martinek K
    Biotechnol Bioeng; 1992 Sep; 40(6):650-62. PubMed ID: 18601164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence of enzyme activity on temperature: determination and validation of parameters.
    Peterson ME; Daniel RM; Danson MJ; Eisenthal R
    Biochem J; 2007 Mar; 402(2):331-7. PubMed ID: 17092210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of hydrogen bond networks in the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    J Chem Phys; 2009 Jul; 131(4):045105. PubMed ID: 19655926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New parameters controlling the effect of temperature on enzyme activity.
    Daniel RM; Danson MJ; Eisenthal R; Lee CK; Peterson ME
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1543-6. PubMed ID: 18031263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.
    Levitsky VYu ; Melik-Nubarov NS; Siksnis VA; Grinberg VYa ; Burova TV; Levashov AV; Mozhaev VV
    Eur J Biochem; 1994 Jan; 219(1-2):219-30. PubMed ID: 8306989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operational stability of copolymerized enzymes at elevated temperatures.
    Mozhaev VV; Siksnis VA; Torchilin VP; Martinek K
    Biotechnol Bioeng; 1983 Aug; 25(8):1937-45. PubMed ID: 18551540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal stability of peroxidase from Chamaerops excelsa palm tree at pH 3.
    Zamorano LS; Vilarmau SB; Arellano JB; Zhadan GG; Cuadrado NH; Bursakov SA; Roig MG; Shnyrov VL
    Int J Biol Macromol; 2009 May; 44(4):326-32. PubMed ID: 19428462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of additional disulfide bonds on the stability and folding of ribonuclease A.
    Pecher P; Arnold U
    Biophys Chem; 2009 Apr; 141(1):21-8. PubMed ID: 19155118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcalorimetric study of thermal unfolding of lysozyme in water/glycerol mixtures: an analysis by solvent exchange model.
    Spinozzi F; Ortore MG; Sinibaldi R; Mariani P; Esposito A; Cinelli S; Onori G
    J Chem Phys; 2008 Jul; 129(3):035101. PubMed ID: 18647045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of magnesium ions on the thermal stability of human poly(A)-specific ribonuclease.
    Liu WF; Zhang A; Cheng Y; Zhou HM; Yan YB
    FEBS Lett; 2007 Mar; 581(5):1047-52. PubMed ID: 17306797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of thermal inactivation of penaeus penicillatus acid phosphatase.
    Yang P; Chen Q; Xie Z; Chen S; Yang Y; Park Y; Zhou H
    Biochemistry (Mosc); 1999 Apr; 64(4):464-7. PubMed ID: 10231602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational stability of alpha-amylase from malted sorghum (Sorghum bicolor): reversible unfolding by denaturants.
    Sai Kumar RS; Singh SA; Rao AG
    Biochimie; 2009 Apr; 91(4):548-57. PubMed ID: 19278621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.