These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18575616)

  • 41. Tryptophan substitutions reveal the role of nicotinic acetylcholine receptor alpha-TM3 domain in channel gating: differences between Torpedo and muscle-type AChR.
    Navedo M; Nieves M; Rojas L; Lasalde-Dominicci JA
    Biochemistry; 2004 Jan; 43(1):78-84. PubMed ID: 14705933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping the conformational wave of acetylcholine receptor channel gating.
    Grosman C; Zhou M; Auerbach A
    Nature; 2000 Feb; 403(6771):773-6. PubMed ID: 10693806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gating dynamics of the acetylcholine receptor extracellular domain.
    Chakrapani S; Bailey TD; Auerbach A
    J Gen Physiol; 2004 Apr; 123(4):341-56. PubMed ID: 15051806
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of the acetylcholine receptor pore at the gating transition state.
    Mitra A; Cymes GD; Auerbach A
    Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15069-74. PubMed ID: 16217024
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subunit-specific contribution to agonist binding and channel gating revealed by inherited mutation in muscle acetylcholine receptor M3-M4 linker.
    Shen XM; Ohno K; Sine SM; Engel AG
    Brain; 2005 Feb; 128(Pt 2):345-55. PubMed ID: 15615813
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acetylcholine receptor gating at extracellular transmembrane domain interface: the "pre-M1" linker.
    Purohit P; Auerbach A
    J Gen Physiol; 2007 Dec; 130(6):559-68. PubMed ID: 18040058
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Naturally occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating.
    Sine SM; Shen XM; Wang HL; Ohno K; Lee WY; Tsujino A; Brengmann J; Bren N; Vajsar J; Engel AG
    J Gen Physiol; 2002 Oct; 120(4):483-96. PubMed ID: 12356851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance.
    Imoto K; Busch C; Sakmann B; Mishina M; Konno T; Nakai J; Bujo H; Mori Y; Fukuda K; Numa S
    Nature; 1988 Oct; 335(6191):645-8. PubMed ID: 2459620
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of M2 domain residues in conductance and gating of acetylcholine receptors in developing Xenopus muscle.
    Sullivan MP; Owens JL; Kullberg RW
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):31-9. PubMed ID: 9925875
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An intersubunit trigger of channel gating in the muscle nicotinic receptor.
    Mukhtasimova N; Sine SM
    J Neurosci; 2007 Apr; 27(15):4110-9. PubMed ID: 17428989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating.
    Wang HL; Milone M; Ohno K; Shen XM; Tsujino A; Batocchi AP; Tonali P; Brengman J; Engel AG; Sine SM
    Nat Neurosci; 1999 Mar; 2(3):226-33. PubMed ID: 10195214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutations in different functional domains of the human muscle acetylcholine receptor alpha subunit in patients with the slow-channel congenital myasthenic syndrome.
    Croxen R; Newland C; Beeson D; Oosterhuis H; Chauplannaz G; Vincent A; Newsom-Davis J
    Hum Mol Genet; 1997 May; 6(5):767-74. PubMed ID: 9158151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The contributions of aspartyl residues in the acetylcholine receptor gamma and delta subunits to the binding of agonists and competitive antagonists.
    Martin M; Czajkowski C; Karlin A
    J Biol Chem; 1996 Jun; 271(23):13497-503. PubMed ID: 8662820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor.
    Tamamizu S; Guzmán GR; Santiago J; Rojas LV; McNamee MG; Lasalde-Dominicci JA
    Biochemistry; 2000 Apr; 39(16):4666-73. PubMed ID: 10769122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Initial coupling of binding to gating mediated by conserved residues in the muscle nicotinic receptor.
    Mukhtasimova N; Free C; Sine SM
    J Gen Physiol; 2005 Jul; 126(1):23-39. PubMed ID: 15955875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Principal pathway coupling agonist binding to channel gating in nicotinic receptors.
    Lee WY; Sine SM
    Nature; 2005 Nov; 438(7065):243-7. PubMed ID: 16281039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acetylcholine receptor channels activated by a single agonist molecule.
    Jha A; Auerbach A
    Biophys J; 2010 May; 98(9):1840-6. PubMed ID: 20441747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip.
    Gupta S; Chakraborty S; Vij R; Auerbach A
    J Gen Physiol; 2017 Jan; 149(1):85-103. PubMed ID: 27932572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function.
    Lee YH; Li L; Lasalde J; Rojas L; McNamee M; Ortiz-Miranda SI; Pappone P
    Biophys J; 1994 Mar; 66(3 Pt 1):646-53. PubMed ID: 7516721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.