These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18575620)

  • 41. Expression and function of a retinoic acid receptor in budding ascidians.
    Hisata K; Fujiwara S; Tsuchida Y; Ohashi M; Kawamura K
    Dev Genes Evol; 1998 Dec; 208(10):537-46. PubMed ID: 9811972
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mini-review: impact and dynamics of surface fouling by solitary and compound ascidians.
    Aldred N; Clare AS
    Biofouling; 2014; 30(3):259-70. PubMed ID: 24447209
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis.
    Gilchrist MJ; Sobral D; Khoueiry P; Daian F; Laporte B; Patrushev I; Matsumoto J; Dewar K; Hastings KE; Satou Y; Lemaire P; Rothbächer U
    Dev Biol; 2015 Aug; 404(2):149-63. PubMed ID: 26025923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi.
    Yamada L
    Dev Biol; 2006 Aug; 296(2):524-36. PubMed ID: 16797000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preventing ascidian fouling in aquaculture: screening selected allelochemicals for anti-metamorphic properties in ascidian larvae.
    Cahill P; Heasman K; Jeffs A; Kuhajek J; Mountfort D
    Biofouling; 2012; 28(1):39-49. PubMed ID: 22235790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression patterns of musashi homologs of the ascidians, Halocynthia roretzi and Ciona intestinalis.
    Kawashima T; Murakami AR; Ogasawara M; Tanaka K; Isoda R; Sasakura Y; Nishikata T; Okano H; Makabe KW
    Dev Genes Evol; 2000 Mar; 210(3):162-5. PubMed ID: 11180818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anthropogenic factors influencing invasive ascidian establishment in natural environments.
    Gewing MT; López-Legentil S; Shenkar N
    Mar Environ Res; 2017 Oct; 131():236-242. PubMed ID: 29033007
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA barcoding of two solitary ascidians, Herdmania momus Savigny, 1816 and Microcosmus squamiger Michaelsen, 1927 from Thoothukudi coast, India.
    Jaffar Ali HA; Ahmed NS
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Jul; 27(4):3005-7. PubMed ID: 26122341
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ascidian introductions through the Suez Canal: The case study of an Indo-Pacific species.
    Rius M; Shenkar N
    Mar Pollut Bull; 2012 Oct; 64(10):2060-8. PubMed ID: 22857711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of large scale expression sequenced tags (ESTs) from the anural ascidian, Molgula tectiformis.
    Gyoja F; Satou Y; Shin-i T; Kohara Y; Swalla BJ; Satoh N
    Dev Biol; 2007 Jul; 307(2):460-82. PubMed ID: 17540363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.
    Huang X; Gao Y; Jiang B; Zhou Z; Zhan A
    Gene; 2016 Jan; 576(1 Pt 1):79-87. PubMed ID: 26428313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The evolution of anural larvae in molgulid ascidians.
    Huber JL; da Silva KB; Bates WR; Swalla BJ
    Semin Cell Dev Biol; 2000 Dec; 11(6):419-26. PubMed ID: 11145870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metamorphosis in solitary ascidians.
    Karaiskou A; Swalla BJ; Sasakura Y; Chambon JP
    Genesis; 2015 Jan; 53(1):34-47. PubMed ID: 25250532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Embryological methods in ascidians: the Villefranche-sur-Mer protocols.
    Sardet C; McDougall A; Yasuo H; Chenevert J; Pruliere G; Dumollard R; Hudson C; Hebras C; Le Nguyen N; Paix A
    Methods Mol Biol; 2011; 770():365-400. PubMed ID: 21805272
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly polymorphic microsatellite loci in the colonial ascidian Botryllus schlosseri.
    Stoner DS; Quattro JM; Weissman IL
    Mol Mar Biol Biotechnol; 1997 Sep; 6(3):163-71. PubMed ID: 9284556
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Looking for putative phenoloxidases of compound ascidians: haemocyanin-like proteins in Polyandrocarpa misakiensis and Botryllus schlosseri.
    Ballarin L; Franchi N; Schiavon F; Tosatto SC; Mičetić I; Kawamura K
    Dev Comp Immunol; 2012 Oct; 38(2):232-42. PubMed ID: 22698614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of DNA (de)methylation-related genes and their transcriptional response to environmental challenges in an invasive model ascidian.
    Fu R; Huang X; Zhan A
    Gene; 2021 Feb; 768():145331. PubMed ID: 33278554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organization of Hox genes in ascidians: present, past, and future.
    Ikuta T; Saiga H
    Dev Dyn; 2005 Jun; 233(2):382-9. PubMed ID: 15844201
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis.
    Jackson PJ; Hill KK; Laker MT; Ticknor LO; Keim P
    J Appl Microbiol; 1999 Aug; 87(2):263-9. PubMed ID: 10475963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bio-invasive ascidians in Ireland: A threat for the shellfish industry but also a source of high added value products.
    Palanisamy SK; Thomas OP; P McCormack G
    Bioengineered; 2018 Jan; 9(1):55-60. PubMed ID: 29072513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.