These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 18576015)

  • 1. Comparison between experimental and theoretical values of effectiveness factor in cephalosporin C production process with immobilized cells.
    Araujo ML; Giordano RC; Hokka CO
    Appl Biochem Biotechnol; 1998; 70-72():493-504. PubMed ID: 18576015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor.
    Cruz AJ; Pan T; Giordano RC; Araujo ML; Hokka CO
    Biotechnol Bioeng; 2004 Jan; 85(1):96-102. PubMed ID: 14705016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the respiration rate of free and immobilized cells of cephalosporium acremonium in cephalosporin C production.
    Araujo ML; Giordano RC; Hokka CO
    Biotechnol Bioeng; 1999 Jun; 63(5):593-600. PubMed ID: 10397815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen supply to immobilized cells: 5. Theoretical calculations and experimental data for the oxidation of glycerol by immobilized Gluconobacter oxydans cells with oxygen or p-benzoquinone as electron acceptor.
    Adlercreutz P
    Biotechnol Bioeng; 1986 Feb; 28(2):223-32. PubMed ID: 18555319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of cephalosporin C by immobilized cells of Cephalosporium acremonium.
    Ellaiah P; Murali Chand G; Srinivasulu B; Pardhasaradhi SV
    Indian J Exp Biol; 2000 Nov; 38(11):1134-7. PubMed ID: 11395958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenological and neural-network modeling of cephalosporin C production bioprocess.
    Cruz AJ; Araujo ML; Giordano RC; Hokka CO
    Appl Biochem Biotechnol; 1998; 70-72():579-92. PubMed ID: 18576023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate.
    Jain D; Ghose TK
    Biotechnol Bioeng; 1984 Apr; 26(4):340-6. PubMed ID: 18553300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and simulation of cephalosporin C production in a fed-batch tower-type bioreactor.
    Almeida RM; Cruz AJ; Araujo ML; Giordano RC; Hokka CO
    Appl Biochem Biotechnol; 2001; 91-93():537-49. PubMed ID: 11963883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of production of dextransucrase and dextran by cells of Leuconostoc mesenteroides immobilized on Celite and in calcium alginate beads.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Jun; 36(1):83-91. PubMed ID: 18592612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling, optimization, and computer control of the cephalosporin C fermentation process.
    Chu WB; Constantinides A
    Biotechnol Bioeng; 1988 Jul; 32(3):277-88. PubMed ID: 18584748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Aminobenzothiazole degradation by free and Ca-alginate immobilized cells of Rhodococcus rhodochrous.
    Chorao C; Charmantray F; Besse-Hoggan P; Sancelme M; Cincilei A; Traïkia M; Mailhot G; Delort AM
    Chemosphere; 2009 Mar; 75(1):121-8. PubMed ID: 19103458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of dextransucrase and dextran by Leuconostoc mesenteroides immobilized in calcium-alginate beads: II. Semicontinuous fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):346-53. PubMed ID: 18595088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen diffusivity in gel beads containing viable cells.
    Kurosawa H; Matsumura M; Tanaka H
    Biotechnol Bioeng; 1989 Oct; 34(7):926-32. PubMed ID: 18588184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of dextransucrase by Leuconostoc mesenteroides immobilized in calcium-alginate beads: I. Batch and fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):338-45. PubMed ID: 18595087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic aspects of the bioconversion of L-tyrosine into L-DOPA by cells of Mucuna pruriensL. Entrapped in different matrices.
    Pras N; Hesselink PG; ten Tusscher J; Malingré TM
    Biotechnol Bioeng; 1989 Jun; 34(2):214-22. PubMed ID: 18588095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain improvement studies for cephalosporin C production by Cephalosporium acremonium.
    Ellaiah P; Adinarayana K; Chand GM; Subramanyam GS; Srinivasulu B
    Pharmazie; 2002 Jul; 57(7):489-90. PubMed ID: 12168534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of environmental growth conditions on plasmid stability, plasmid copy number, and catechol 2,3-dioxygenase activity in free and immobilized Escherichia coli cells.
    Sayadi S; Nasri M; Barbotin JN; Thomas D
    Biotechnol Bioeng; 1989 Feb; 33(7):801-8. PubMed ID: 18587986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Cellular Fatty Acid Composition of Cephalosporium acremonium during Cephalosporin C Production.
    Sohn YS; Lee KC; Koh YH; Gil GH
    Appl Environ Microbiol; 1994 Mar; 60(3):947-52. PubMed ID: 16349222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic flux distribution in Corynebacterium melassecola ATCC 17965 for various carbon sources.
    Pons A; Dussap CG; Péquignot C; Gros JB
    Biotechnol Bioeng; 1996 Jul; 51(2):177-89. PubMed ID: 18624327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degumming and characterization of ramie fibre using pectate lyase from immobilized Bacillus pumilus DKS1.
    Basu S; Saha MN; Chattopadhyay D; Chakrabarti K
    Lett Appl Microbiol; 2009 May; 48(5):593-7. PubMed ID: 19416461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.