These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 18576019)
1. Improvement of oxygen transfer coefficient during Penicillium canescens culture. Influence of turbine design, agitation speed, and air flow rate on xylanase production. Gaspar A; Strodiot L; Thonart P Appl Biochem Biotechnol; 1998; 70-72():535-45. PubMed ID: 18576019 [TBL] [Abstract][Full Text] [Related]
2. Influence of a new axial impeller on K(L)a and xylanase production by Penicillium canescens 10-10c. Bakri Y; Jacques P; Shi LK; Thonart P Appl Biochem Biotechnol; 2002; 98-100():1037-48. PubMed ID: 12018228 [TBL] [Abstract][Full Text] [Related]
3. Effect of impeller type and mechanical agitation on the mass transfer and power consumption aspects of ASBR operation treating synthetic wastewater. Michelan R; Zimmer TR; Rodrigues JA; Ratusznei SM; de Moraes D; Zaiat M; Foresti E J Environ Manage; 2009 Mar; 90(3):1357-64. PubMed ID: 18814952 [TBL] [Abstract][Full Text] [Related]
4. Effect of impeller type and agitation on the performance of pilot scale ASBR and AnSBBR applied to sanitary wastewater treatment. de Novaes LF; Saratt BL; Rodrigues JA; Ratusznei SM; de Moraes D; Ribeiro R; Zaiat M; Foresti E J Environ Manage; 2010 Aug; 91(8):1647-56. PubMed ID: 20363066 [TBL] [Abstract][Full Text] [Related]
5. Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter. Takesono S; Onodera M; Toda K; Yoshida M; Yamagiwa K; Ohkawa A Bioprocess Biosyst Eng; 2006 Mar; 28(4):235-42. PubMed ID: 16208498 [TBL] [Abstract][Full Text] [Related]
6. Dependence of penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. J sten P ; Paul GC; Nienow AW; Thomas CR Biotechnol Bioeng; 1998 Sep; 59(6):762-75. PubMed ID: 10099397 [TBL] [Abstract][Full Text] [Related]
7. Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Li ZJ; Shukla V; Wenger KS; Fordyce AP; Pedersen AG; Marten MR Biotechnol Prog; 2002; 18(3):437-44. PubMed ID: 12052056 [TBL] [Abstract][Full Text] [Related]
8. A novel centrifugal impeller bioreactor. II. Oxygen transfer and power consumption. Wang SJ; Zhong JJ Biotechnol Bioeng; 1996 Sep; 51(5):520-7. PubMed ID: 18629815 [TBL] [Abstract][Full Text] [Related]
9. Solid-state fermentation of xylanase from Penicillium canescens 10-10c in a multi-layer-packed bed reactor. Assamoi AA; Destain J; Delvigne F; Lognay G; Thonart P Appl Biochem Biotechnol; 2008 Mar; 145(1-3):87-98. PubMed ID: 18425615 [TBL] [Abstract][Full Text] [Related]
10. Dependence of mycelial morphology on impeller type and agitation intensity. Jüsten P; Paul GC; Nienow AW; Thomas CR Biotechnol Bioeng; 1996 Dec; 52(6):672-84. PubMed ID: 18629946 [TBL] [Abstract][Full Text] [Related]
11. Cultivation of plant cells in a stirred vessel: effect of impeller design. Hooker BS; Lee JM; An G Biotechnol Bioeng; 1990 Feb; 35(3):296-304. PubMed ID: 18592522 [TBL] [Abstract][Full Text] [Related]
12. Enhancing aspergiolide A production from a shear-sensitive and easy-foaming marine-derived filamentous fungus Aspergillus glaucus by oxygen carrier addition and impeller combination in a bioreactor. Cai M; Zhou X; Lu J; Fan W; Niu C; Zhou J; Sun X; Kang L; Zhang Y Bioresour Technol; 2011 Feb; 102(3):3584-6. PubMed ID: 21074418 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive comparison of mixing, mass transfer, Chinese hamster ovary cell growth, and antibody production using Rushton turbine and marine impellers. Sandadi S; Pedersen H; Bowers JS; Rendeiro D Bioprocess Biosyst Eng; 2011 Sep; 34(7):819-32. PubMed ID: 21505815 [TBL] [Abstract][Full Text] [Related]
14. Performance of mammalian cell culture bioreactor with a new impeller design. Shi Y; Ryu DD; Park SH Biotechnol Bioeng; 1992 Jun; 40(2):260-70. PubMed ID: 18601112 [TBL] [Abstract][Full Text] [Related]
15. Effect of agitation rate and impeller design on oxygen transfer coefficients in small bioreactors using surface aeration. Sybert EM; Winter EL; Cadman TW; Conner MA Biotechniques; 1989 Apr; 7(4):368-73. PubMed ID: 2629849 [TBL] [Abstract][Full Text] [Related]
16. Comparison of biotin production by recombinant Sphingomonas sp. under various agitation conditions. Saito I; Honda H; Kawabe T; Mukumoto F; Shimizu M; Kobayashi T Biochem Eng J; 2000 Jun; 5(2):129-136. PubMed ID: 10817818 [TBL] [Abstract][Full Text] [Related]
17. Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor. Keng PS; Basri M; Ariff AB; Abdul Rahman MB; Abdul Rahman RN; Salleh AB Bioresour Technol; 2008 Sep; 99(14):6097-104. PubMed ID: 18243690 [TBL] [Abstract][Full Text] [Related]
18. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Ungerman AJ; Heindel TJ Biotechnol Prog; 2007; 23(3):613-20. PubMed ID: 17326659 [TBL] [Abstract][Full Text] [Related]
19. Studies on the overall oxygen transfer rate and mixing time in pilot-scale surface aeration vessel. Kang J; Lee CH; Haam S; Koo KK; Kim WS Environ Technol; 2001 Sep; 22(9):1055-68. PubMed ID: 11816768 [TBL] [Abstract][Full Text] [Related]
20. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Garcia-Ochoa F; Gomez E Biotechnol Adv; 2009; 27(2):153-76. PubMed ID: 19041387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]